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STABLE DEGENERATIONS OF SURFACES
ISOGENOUS TO A PRODUCT OF CURVES

MICHAEL VAN OPSTALL

(Communicated by Michael Stillman)

Abstract. We show that an example of Catanese yields nonrigid surfaces
that are diffeomorphic, yet lie on different connected components of the moduli
space of stable surfaces.

1. Introduction

In [Cat00] and its sequel, [Cat03], Catanese studies surfaces which admit an
unramified cover by a product of curves of genus greater than one. The main
interesting result from the point of view of moduli theory is that the moduli space
of such surfaces (that is, of the class of canonically polarized surfaces whose smooth
members are homeomorphic to a given surface) is either irreducible or has two
connected components, swapped by complex conjugation. Of course these articles
contain many more important and very interesting results.

In [KSB88], Kollár and Shepherd-Barron introduced a compactification of the
moduli space of canonically polarized surfaces. The details of the construction
are subtle and due to several authors. In particular, they give a stable reduction
procedure, by which any one-parameter family of surfaces over a punctured disk
can be completed to a family of so-called stable surfaces over a finite cover of the
disk. The stable reduction is obtained by taking the relative canonical model of a
semistable resolution of the original family.

This article is concerned with determining the stable surfaces which occur at the
boundary of this moduli space. The moduli space of stable curves provides us with
candidates for the boundary surfaces, and we simply verify that these candidates
are already stable, so the full force of the minimal model program is not required.

Pairing our results with Catanese’s results, we obtain that the two components
of the moduli space of canonically polarized surfaces do not meet in the stable
compactification. This is the first nonrigid example known to the author of discon-
nectedness of a moduli space of stable surfaces after fixing the diffeomorphism class
of a smooth member. The first rigid examples are due to Kharlamov and Kulikov
in [KK02], where they construct rigid surfaces not isomorphic to their complex con-
jugates. One of their goals was to show that not every deformation class of complex
manifolds contains a manifold with a real structure. Other rigid examples can be
found in the paper [BC04] of Bauer and Catanese. The examples of Catanese used
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here give components of the moduli space exchanged by complex conjugation. Since
they do not intersect, the moduli space has no real points. The disconnectedness
of the moduli space of canonically polarized surfaces with fixed differentiable struc-
ture was first proved by Manetti [Man01]. However, to establish that his surfaces
which lie on different components of the moduli space are diffeomorphic, he de-
generates them all to a single stable surface and uses a powerful result, proved in
the same article, that smooth surfaces on different irreducible components of the
moduli space are diffeomorphic if the surfaces parameterized by the intersection of
the two components are sufficiently mild. Catanese’s examples, on the other hand,
are obviously diffeomorphic surfaces.

2. Stable surfaces and surfaces isogenous to a product

First we define the higher-dimensional analogue of the nodes which are allowed
on stable curves:

Definition 2.1. A surface S has semi-log canonical (slc) singularities if
1. S is Cohen-Macaulay;
2. S has normal crossings singularities in codimension one;
3. S is Q-Gorenstein, i.e. some reflexive power of the dualizing sheaf of S is

a line bundle;
4. for any birational morphism π : X → S from a smooth variety, if we write

(numerically)
KX = π∗KS +

∑
aiEi,

then all the ai ≥ −1.

The second condition in the definition implies that the dualizing sheaf of S is
an invertible sheaf off a subset of codimension 2, so it can be extended to give a
Weil divisor class KS . The third condition states that some multiple of this class
is Cartier, so we can make sense of the formula occuring in the fourth condition. A
complete classification of slc surface singularities can be found in [KSB88]. Suppose
S is a Q-Gorenstein surface. Let Sν be the normalization, and D the inverse image
of the codimension 1 singular set under the normalization morphism. Then the
condition that S be slc is equivalent to the condition that (Sν , D) is a log canonical
(lc) pair.

The notation F [N ] for a coherent sheaf F denotes the N th reflexive power of F ,
that is, the double dual of the Nth tensor power of F .

Definition 2.2. A stable surface is a projective, reduced surface S with slc singu-
larities such that some reflexive power ω

[N ]
S is an ample line bundle. The smallest

such N such that ω
[N ]
S is a line bundle is called the index of S. A family of stable

surfaces is a flat morphism X → B whose fibers are stable surfaces and whose
relative dualizing sheaf ωX/B is Q-Cartier.

After fixing a Hilbert polynomial P , there is a bound for the index of a stable
surface with Hilbert polynomial P [Ale94]. This is one of the ingredients in the
construction of the moduli space of stable surfaces with fixed Hilbert polynomial P ,
which compactifies the moduli space of canonically polarized surfaces (after possi-
bly throwing away some components parameterizing only singular surfaces). This
moduli space is proper and separated. The moduli space would not be separated
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without the requirement that families of stable surfaces have a Q-Cartier relative
dualizing sheaf. It is worth noting that in a later article ([Kol90]) Kollár strength-
ened the conditions that a family of stable surfaces should satisfy. It is unknown
whether the Q-Gorenstein assumption alone implies these stronger conditions. For
our purposes, the weaker condition is sufficient, since it is known to imply the
stronger conditions in the case of one-parameter families whose general member is
smooth.

We now recall some of the definitions from [Cat00].

Definition 2.3. A surface S is called isogenous to a product if it admits an un-
ramified cover by a product of curves of genus two or higher.

Remark 2.4. Catanese calls such a surface isogenous to a higher product, but we
will not be interested in surfaces covered by, say, a product of elliptic curves. It is
clear that any such surface is canonically polarized, since the cover by a product of
curves contains no rational curves, so S contains none.

The following is a summary of 3.10-3.13 loc. cit.

Proposition 2.5 (Catanese). A surface S isogenous to a product can be written
uniquely as (C1 ×C2)/G for some group G which embeds into Aut C1 and Aut C2,
as long as C1 and C2 are not isomorphic. If C1 and C2 are isomorphic, the sub-
group of G consisting of automorphisms not switching the factors embeds into the
automorphism group of each factor to obtain this minimal realization.

This proposition allows us to describe small deformations of certain surfaces
isogenous to a product.

Definition 2.6. The functor of deformations of a stable curve C with the action
of a finite group G assigns to an artin ring A:

1. a flat morphism X → Spec A,
2. an embedding of G in the group Aut Spec AX of automorphisms of the

family over the base,
3. and an equivariant isomorphism of the special fiber of the family X with

the stable curve C.

Proposition 2.7 (Tuffery). The functor of deformations of a stable curve C to-
gether with a subgroup G of the automorphism group is “well-behaved” (i.e. satisfies
the Schlessinger conditions) and unobstructed, with tangent space Ext1(ΩC ,OC)G.
Such pairs have a proper moduli space, finite over a closed subvariety of the moduli
space of stable curves.

The proof of this may be found in [Tuf93]. Note that the statements given
here are stronger than those given in that article, since we work over a field of
characteristic zero, which greatly simplifies equivariant cohomology with respect to
a finite group. In what follows, Kuranishi space will be convenient shorthand for
“pointed analytic isomorphism class of the base of a miniversal deformation”.

Proposition 2.8. The Kuranishi space of a surface S minimally realized as a free
quotient (C1 ×C2)/G is isomorphic to the product of Kuranishi spaces of the pairs
(C1, G) and (C2, G) if G contains no elements that swap the factors. If G contains
elements that swap the factors, then set G0 equal to the subgroup of G of elements
not swapping the factors. Then the Kuranishi space of S = (C×C)/G is isomorphic
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to the Kuranishi space of (C, G0). Consequently, the Kuranishi space is smooth, and
the moduli space of canonically polarized surfaces is irreducible at S.

Proof. Since all deformation functors in question are “nice” enough, we may resolve
the question by checking to first order. In the case that G does not swap the factors:

H1(S, TS) = H1(C1 × C2, TC1×C2)
G

= H1(C1, TC1)
G ⊕ H1(C2, TC2)

G.

The first line is valid only when G acts freely, but the second line works generally
for products of canonically polarized varieties, assuming G acts on both factors
(see, e.g., [vO05]).

In the case G swaps the factors ([Cat00], Corollary 3.9 and Remark 3.10), G is the
semidirect product of the group G0 by the group Z2 which permutes the factors. In
this case, the above computation holds with G replaced by G0. The Z2 action also
permutes factors in cohomology, so we obtain H1(C × C, TC×C) ∼= H1(C, TC)G0 .

Since deformations of curves with group action are unobstructed, the Kuranishi
space of S is smooth. Since S has a finite automorphism group, the moduli space of
S locally near S has only finite quotient singularities, so cannot be reducible. �

3. Degenerations

Our main goal is the following theorem.

Theorem 3.1. Suppose X → ∆′ is a family of surfaces isogenous to products over
a punctured disk. Then possibly after a finite change of base, totally ramified over
the origin in the disc, X (or a pullback thereof) can be completed to a family of
stable surfaces over the disk whose central fiber is a quotient of a product of stable
curves (possibly by a nonfree group action).

Proof. By Proposition 2.8, we may assume that X is of the form (Y1 ×∆′ Y2)/G,
where Y1 and Y2 are families of smooth curves with G-action, such that the G-
action is fiberwise and free on Y1 ×∆′ Y2. Since the moduli functor of stable curves
with automorphism group G is proper, after a base change (which we will suppress
in our notation), we obtain a family X̃ of the desired form.

It remains to see that the central fiber is a stable surface, and that the family
X̃ is a family of stable surfaces. X̃ is obtained by taking the quotient of a family
Ỹ of stable surfaces by a group action. Since the group acts freely on the general
fiber, the quotient morphism π is étale in codimension one. In this case, [KM98],
Proposition 5.20 ensures that X̃ is Q-Gorenstein, so the special fiber is as well.
Well-known results ensure that the special fiber is Cohen-Macaulay. A finite quo-
tient of a variety which is normal crossings in codimension one is normal crossings
in codimension one by Corollary 1.7 of [AAL81]. Now [KM98], Proposition 5.20
(appropriately modified to take into account nonnormal varieties), states that a
finite quotient of an slc variety is slc as soon as it is Q-Gorenstein and normal
crossings in codimension 1.

Finally, we need to check that ωX̃ is relatively ample. We can use Nakai-
Moishezon: if ωX̃ is not relatively ample, there is a curve D in the special fiber
whose intersection with KX̃ is nonpositive. Since π is unramified in codimension
1, we have that KỸ = π∗KX̃ . Since Y is a product of families of stable curves,
KỸ is ample. However, if D is nonpositive on KX̃ , the pullback of D would be
nonpositive on KỸ , a contradiction. �
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4. Application to Catanese’s examples

In [Cat03], Catanese gives a family of examples of moduli spaces of smooth
surfaces with fixed K2 and χ fixed which have two components interchanged by
complex conjugation. We review his construction here and study the degenerations
of his surfaces.

The construction of the example begins with the construction of a triangle curve
(i.e. a Galois cover of P1 branched at three points) which is not antiholomorphic to
itself. Let C denote this curve and G denote the Galois group of the cover C → P1.
G is therefore a quotient of the fundamental group of P1 minus three points, and is
consequently generated by two elements. Choose h ≥ 2 and a curve C ′

1 of genus h.
Then the fundamental group of C ′

1 surjects onto G, so there exists an étale cover
C1 → C ′

1 with Galois group G. Then the surface S = (C1 ×C)/G is isogenous to a
product of curves of general type (the triangle curve constructed is not the elliptic
curve with j-invariant 1728, which is the only triangle curve not of general type).

The critical result for finding multiple components of the moduli space is
Catanese’s Proposition 3.2: the existence of an antiholomorphic isomorphism of
two surfaces minimally realized as surfaces isogenous to products of curves of gen-
eral type implies antiholomorphic isomorphisms of the factors (up to reordering the
factors). In what follows, denote by X the complex conjugate of the manifold X.

Choosing any C ′
2 of genus h and a cover C2 of C ′

2 with Galois group G as above,
suppose (C1×C)/G ∼= (C2 × C)/G. Then there is an antiholomorphic isomorphism
of (C1 × C)/G with (C2 × C)/G, and hence, an antiholomorphic automorphism of
C, which is impossible by the construction of C. The various choices of C2 fill out
a component of the moduli space. But (C2 × C)/G is diffeomorphic to (C2×C)/G,
and hence also has a point in the moduli space, which cannot be on this component.
Therefore the moduli space has at least two components.

Now let us consider the stable degenerations of these surfaces, and address
the question of whether the two components are joined together by deformations
through stable surfaces. The results in this chapter show that the (small) deforma-
tions of S are just the G-equivariant deformations of C1, or equivalently, the de-
formations of C1/G. Let M denote the moduli space of smoothable stable surfaces
occuring as degenerations of (C1 × C)/G or its conjugate. M has two irreducible
components; is it connected?

Suppose M were connected: then there would exist a surface (C ′×C)/G on the
boundary of the moduli space which lies on the closure of both components. Since
both components come from curves with G-action, the map induced from the Ku-
ranishi space of (C ′×C, G) must surject onto a neighborhood of the corresponding
boundary point. Since the G action on C ′ × C is not necessarily free, we cannot
claim directly that the Kuranishi space of (C ′ ×C)/G is irreducible. However, the
Kuranishi space of (C ′ × C, G) is irreducible (by Proposition 2.7 and the fact that
the Kuranishi space is a product when G acts on both factors and both factors
are stable curves), so it cannot map onto two components, but it does map onto
the Kuranishi space of (C ′ × C)/G. So the disconnection of various moduli spaces
considered in [Cat03] continues in the stable compactification.

Note that this argument is not strong enough in general to claim that a mod-
uli space of surfaces isogenous to a product of curves is always irreducible at the
boundary: it just rules out deformations to other surfaces isogenous to a product
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with the same Galois group. By the results of [Cat03], there are at most two compo-
nents of the moduli space (after fixing topology) parameterizing smooth varieties,
but there may be a component parameterizing only singular surfaces meeting both
other components along the boundary.
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