Stable degenerations of surfaces isogenous to a product of curves
HTML articles powered by AMS MathViewer
- by Michael van Opstall
- Proc. Amer. Math. Soc. 134 (2006), 2801-2806
- DOI: https://doi.org/10.1090/S0002-9939-06-08517-0
- Published electronically: April 11, 2006
- PDF | Request permission
Abstract:
We show that an example of Catanese yields nonrigid surfaces that are diffeomorphic, yet lie on different connected components of the moduli space of stable surfaces.References
- William A. Adkins, Aldo Andreotti, and John V. Leahy, Weakly normal complex spaces, Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche e loro Applicazioni [Contributions of the Linceo Interdisciplinary Center for Mathematical Sciences and their Applications], vol. 55, Accademia Nazionale dei Lincei, Rome, 1981. MR 695003
- Valery Alexeev, Boundedness and $K^2$ for log surfaces, Internat. J. Math. 5 (1994), no. 6, 779–810. MR 1298994, DOI 10.1142/S0129167X94000395
- Ingrid C. Bauer and Fabrizio Catanese, Some new surfaces with $p_g=q=0$, The Fano Conference, Univ. Torino, Turin, 2004, pp. 123–142. MR 2112572
- Fabrizio Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122 (2000), no. 1, 1–44. MR 1737256, DOI 10.1353/ajm.2000.0002
- Fabrizio Catanese, Moduli spaces of surfaces and real structures, Ann. of Math. (2) 158 (2003), no. 2, 577–592. MR 2018929, DOI 10.4007/annals.2003.158.577
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- Vik. S. Kulikov and V. M. Kharlamov, On real structures on rigid surfaces, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 1, 133–152 (Russian, with Russian summary); English transl., Izv. Math. 66 (2002), no. 1, 133–150. MR 1917540, DOI 10.1070/IM2002v066n01ABEH000374
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268. MR 1064874
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI 10.1007/BF01389370
- Marco Manetti, On the moduli space of diffeomorphic algebraic surfaces, Invent. Math. 143 (2001), no. 1, 29–76. MR 1802792, DOI 10.1007/s002220000101
- Stéphane Tufféry, Déformations de courbes avec action de groupe, Forum Math. 5 (1993), no. 3, 243–259 (French, with English summary). MR 1216034, DOI 10.1515/form.1993.5.243
- Michael A. van Opstall, Moduli of products of curves, Arch. Math. (Basel) 84 (2005), no. 2, 148–154. MR 2120708, DOI 10.1007/s00013-004-1045-8
Bibliographic Information
- Michael van Opstall
- Affiliation: Departmant of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, Utah 84112-0090
- Email: opstall@math.utah.edu
- Received by editor(s): December 16, 2004
- Received by editor(s) in revised form: April 18, 2005
- Published electronically: April 11, 2006
- Communicated by: Michael Stillman
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2801-2806
- MSC (2000): Primary 14J10
- DOI: https://doi.org/10.1090/S0002-9939-06-08517-0
- MathSciNet review: 2231601