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FOR THE 3x + 1 CONJECTURE

KENNETH M. MONKS

(Communicated by Michael Handel)

Abstract. Define T : Z+ → Z+ by T (x) = (3x + 1) /2 if x is odd and
T (x) = x/2 if x is even. The 3x+1 Conjecture states that the T -orbit of every
positive integer contains 1. A set of positive integers is said to be sufficient if
the T -orbit of every positive integer intersects the T -orbit of an element of that
set. Thus to prove the 3x+1 Conjecture it suffices to prove it on some sufficient
set. Andaloro proved that the sets 1 + 2nN are sufficient for n ≤ 4 and asked
if 1 + 2nN is also sufficient for larger values of n. We answer this question
in the affirmative by proving the stronger result that A + BN is sufficient
for any nonnegative integers A and B with B �= 0, i.e. every nonconstant
arithmetic sequence forms a sufficient set. We then prove analagous results for
the Divergent Orbits Conjecture and Nontrivial Cycles Conjecture.

1. Introduction and statement of main results

A dynamical system on a set X is obtained by iterating a map f : X → X. For
any function f : X → X and any x ∈ X, the f-orbit of x is the set

{
fk (x) : k ∈ N

}
,

where f0 is the identity map and fk = f◦fk−1 for all positive integers k. If x, y ∈ X
whose f -orbits are not disjoint, we will say that x and y merge or that x merges
with y. Thus, x and y merge if and only if there exist some nonnegative integers
k and j such that fk (x) = f j (y) . The relation “merges with” is an equivalence
relation on X. A subset S ⊆ X is called sufficient for f on X if S meets every
equivalence class, i.e. if every element of X merges with some element of S. Since
all of the elements in an equivalence class merge, the long-term behavior of their
orbits must be identical. Thus to determine the long-term behavior of the orbits of
the elements of X, it suffices to determine the long-term behavior of the orbits of
the elements of some sufficient set S.

The famous 3x + 1 Conjecture has been an open problem in dynamical systems
theory for more than 65 years (see [Lag], [Wir]). The conjecture states that the
T -orbit of every positive integer contains 1, where T is given by T (x) = x/2 if x is
even and T (x) = (3x + 1) /2 if x is odd. For any positive integer x, if x merges with
1, then T k (x) = T j (1) for some nonnegative integers k and j. Since T j (1) = 1 if j
is even and T j (1) = 2 if j is odd, either T k (x) = 1 or T k+1 (x) = 1. In either case
the T -orbit of x contains 1. Thus, the 3x+1 Conjecture is true if and only if every
positive integer merges with 1. Therefore, to prove the conjecture it suffices to
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prove it holds on some set S that is sufficient for T on Z+, since if every element of
S merges with 1, then every positive integer also merges with 1. For the remainder
of the paper, the term “sufficient” with no qualification will mean “sufficient for T
on Z+”.

Andaloro [And] proved that the set 1 + 16N is sufficient. As any superset of a
sufficient set is also sufficient, it follows that 1 + 2nN is sufficient for n ≤ 4. In the
same paper, Andaloro asks if 1 + 2nN is sufficient for any or all n > 4.

All of the sets 1 + 2nN are members of the more general family of sets of the
form A + BN, where A and B are natural numbers and B �= 0. We will call any
such set an arithmetic progression since it is the set of terms in the nonconstant
arithmetic sequence A, A + B, A + 2B, . . .. It is natural to ask which of these sets
are sufficient. We answer this question with our main result.

Theorem 1.1. Every arithmetic progression is sufficient.

We postpone the proof until Section 3.
There are only two ways that the T -orbit of a positive integer x can fail to

contain 1. If x has an unbounded T -orbit, we say the T -orbit of x is divergent.
The well-known Divergent Orbits Conjecture states that no positive integer has an
unbounded T -orbit. Let S be a set of positive integers with the following property:
if no element of S has an unbounded orbit, then the Divergent Orbits Conjecture
is true. We say such a set S is sufficient for the Divergent Orbits Conjecture.

If T k (x) = x for some k > 1, then we say the T -orbit of x is a cycle. The second
way the 3x + 1 Conjecture could be false is if the T -orbit of some positive integer
x is a cycle other than the trivial cycle, {1, 2}. The well-known Nontrivial Cycles
Conjecture states that the only cycle of positive integers is the trivial one. As with
the previous conjecture, we say S is sufficient for the Nontrivial Cycles Conjecture
when S has the following property: if no element of S has an orbit that contains a
nontrivial cycle, then the Nontrivial Cycles Conjecture is true.

Clearly the truth of these two conjectures would imply the 3x + 1 Conjecture.
Our result carries over to these conjectures.

Corollary 1.2. Every arithmetic progression is sufficient for the Divergent Orbits
Conjecture.

Corollary 1.3. Every arithmetic progression is sufficient for the Nontrivial Cycles
Conjecture.

Thus to prove any of the three conjectures, the 3x+1 Conjecture, the Divergent
Orbits Conjecture, or the Nontrivial Cycles Conjecture, it suffices to show that it
holds for the elements of some arithmetic progression. Hence, studying the behavior
of T on particular arithmetic sequences may lead to a proof of the conjecture itself.

Though not directly applicable to the 3x + 1 Conjecture itself, the arguments
in this paper can be used to show that every negative arithmetic progression (the
negation of all terms in an arithmetic progression) is sufficient for T on Z−. Addi-
tionally, the union of an arithmetic progression, a negative arithmetic progression,
and {0} forms a sufficient set for T on Z. The proofs of these cases are omitted, as
they are identical to the proof of Theorem 1.1.

In the next section we provide previously known facts and notation used in our
proofs.
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2. Background information and notation

For convenience, we include here notation and results from Wirsching’s book
[Wir] and other sources that will be used in the proofs of our results.

For any a, b, c ∈ Z, c > 0, we will write a ≡
c

b as an abbreviation for a = b

(mod c).

Define the set of feasible vectors to be F =
∞⋃

k=0

Nk+1. Let s ∈ F . Then s =

(s0, s1, ..., sk) for some nonnegative integers k and s0, s1, ..., sk. The length of s,

written l (s), is k. The norm of s, written ||s||, is l (s) +
l(s)∑
i=0

si.

In our proof, it will be essential to consider the inverses of the piecewise com-
ponents of T . The even and odd components are denoted T0 (x) = x/2 and
T1 (x) = (3x + 1) /2 respectively, giving T−1

0 (x) = 2x and T−1
1 (x) = 2 · 3−1x −

3−1 as functions on the rational numbers. For s ∈ F with s = (s0, s1, ..., sk),
Wirsching calls the function vs : Z+ → Q given by

vs = T−s0
0 ◦ T−1

1 ◦ T−s1
0 ◦ T−1

1 ◦ . . . ◦ T−1
1 ◦ T−sk

0

a back-tracing function. If vs (x) ∈ Z+, then we say s is an admissible vector for
x. Define E (x) = {s ∈ F : s is admissible for x}. Wirsching proves a lemma that
justifies calling vs the back-tracing function.

Lemma 2.1 ([Wir, Lemma 2.17]). If s ∈ E (x), then T ||s|| (vs (x)) = x.

Wirsching also works out a convenient explicit formula for vs in terms of the
entries of s.

Lemma 2.2 ([Wir, Lemma 2.13]). Let s ∈ F . Define

c (s) =
2||s||

3l(s)

and

r (s) =
l(s)−1∑
j=0

2j+s0+s1+...+sj 3−(j+1).

Then vs (x) = c (s)x − r (s) .

It is also useful to concatenate smaller vectors into larger vectors. Let s =
(s0, s1, s2, ..., sk) and t = (t0, t1, t2, ..., tm). Define s · t = (s0, s1, s2, ..., sk−1, sk + t0,
t1, t2, ..., tm). Then vs·t represents the function that back-traces first along t and
then along s, as indicated by the following lemma.

Lemma 2.3 ([Wir, Corollary 2.10]). For any s, t ∈ F , vs·t = vs ◦ vt.

In contrast to concatenation, it is also useful to back-trace through part of a
longer back-tracing vector. Define a terminal part of a vector s = (s0, s1, s2, ..., sk)
to be any vector of the form (sj , sj+1, ..., sk) for j ∈ {0, 1, ..., k}. Wirsching proves
a lemma regarding these.

Lemma 2.4 ([Wir, Lemma 2.16]). Let s ∈ F and let x ∈ Z+. If s ∈ E (x), then for
any terminal part t of s, t ∈ E (x) .

Additionally, a condition relating divisibility by 3 and back-tracing will be needed.
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Lemma 2.5 ([Wir, Lemma 3.4]). Let x ∈ Z+. Then x �≡
3

0 if and only if there

exists some s ∈ E (x) with l (s) ≥ 1.

Note that T0 and T1 are both nonconstant linear functions and therefore are
bijections on R. Thus, T0, T1, and their inverses generate a group of real-valued
functions. This group is described by Misiurewicz and Rodrigues [MR].

Lemma 2.6 ([MR, Theorem 5.1]). Let G be the group of real-valued functions
generated by T0, T1, T−1

0 , and T−1
1 . Then

G =
{

h : h (x) = 2n3mx +
k

2i3j
for some n, m, k ∈ Z and i, j ∈ N

}
.

Finally, the following number theoretic result follows from arguments given in
[Ber].

Lemma 2.7. For every n ∈ N, for every odd τ ∈ N, and for every a ∈ Z, there
exists an increasing (possibly empty) sequence of natural numbers t1, t2, ..., th with

th < n such that
h∑

i=1

2tiτ i ≡
2n

a.

3. Proof

Much of the proof will consist of studying the actions of functions T0 and T1 on
Z/bZ, where b is a positive integer relatively prime to 2 and 3. Let b be such an
integer and let Zb = Z/bZ. Note that a function of the form

(3.1) h (x) = 2n3mx + k

induces a well-defined permutation of Zb for any n, m, k ∈ Z. For any such function
h, define h to be the corresponding permutation of Zb. We adopt the usual conven-
tion of using x to stand for the congruence class of the integer x in expressions such
as h (x). For example, T0 : Zb → Zb and T1 : Zb → Zb are given by T0 (x) = 2−1x
and T1 (x) = 2−13x + 2−1, and both are in the form of (3.1). Note also that if h
and g are two functions in the form of (3.1), then h ◦ g is also of the same form,
and h ◦ g = h ◦ g. We classify the group generated by these two permutations for
a given b.

Lemma 3.1. Let b be a positive integer relatively prime to 2 and 3. Let Gb be the
group of permutations on Zb generated by T0 and T1. Then

Gb =
{
h : h (x) = 2n3mx + k for some n, m, k ∈ Z

}
.

Proof. Define

M =
{
h : h (x) = 2n3mx + k for some n, m, k ∈ Z

}
and let H ∈ M . Then H = h for some h such that h (x) = 2n3mx + k for some
n, m, k ∈ Z. By Lemma 2.6 h is some composition of T0, T1, T

−1
0 , and T−1

1 . Thus
there exist e1, e2, . . . , eg ∈ Z such that h = T

eg

1 ◦ T
eg−1
0 ◦ . . . ◦ T e4

1 ◦ T e3
0 ◦ T e2

1 ◦ T e1
0 .

Since the set of permutations on Zb is a finite group, there exist σ0, σ1 ∈ Z+

such that T0
σ0 = T0 and T1

σ1 = T1. Thus by increasing ei by a multiple of σ0 for
odd i and increasing ei by a multiple of σ1 for even i as necessary, we can create a
sequence of positive integers e′1, e

′
2, . . . , e

′
g such that h = T1

e′
g ◦ T0

e′
g−1 ◦ . . . ◦ T1

e′
4 ◦

T0
e′
3 ◦ T1

e′
2 ◦ T0

e′
1 . Therefore h ∈ Gb, so H ∈ Gb. Thus M ⊆ Gb.
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Conversely, since b is relatively prime to 2 and 3, both 2−1 and 3−1 are ele-
ments of Zb. Thus, the generators T0 (x) = 2−1x = 2−130x + 0 and T1 (x) =
2−131x + 2−1 are both elements of M . Therefore

(
T0 ◦ H

)
(x) = 2n−13mx + 2−1k

and
(
T1 ◦ H

)
(x) = 2n−13m+1x +

(
2−13k + 2−1

)
, which are also both elements of

M . Thus M contains the generators of Gb and is closed under composition with
respect to these generators. Hence Gb ⊆ M , and we are done. �

We now present an outline of the proof. In order to prove that any arithmetic
progression is sufficient, we choose an arbitrary arithmetic progression A+BN and
an arbitrary positive integer x and show that x merges with an element a ∈ A+BN.
This is done in three steps. In the first step (Lemma 3.2), we find a particular k
such that we can back-trace from T k (x) to a. In the second step (Lemma 3.6),
we use T k (x) as a stepping-stone to show that x merges with a number z that is
congruent to 0 modulo 2nb, where B = 2n3mb and b is relatively prime to 2 and 3.
For the third and final step (Lemma 3.8), we use z as the next stepping-stone to
show that x merges with a.

To begin the first step, we observe that in order to back-trace from a number
with admissible vectors of positive length, it must not be divisible by 3 by Lemma
2.5.

Lemma 3.2. For every x ∈ Z+, there exists k ∈ N such that T k (x) �≡
3

0.

Proof. Let x ∈ Z+. If x �≡
3

0, then we are done, since T 0 (x) = x.

Assume x ≡
3

0. Let k be one more than the exponent of the largest 2-power that

divides x. Clearly T k−1 (x) = 2i + 1 for some i ∈ N. Thus

T k (x) = T
(
T k−1 (x)

)
= T (2i + 1)

=
3 (2i + 1) + 1

2
= 3i + 2
�≡
3

0.

�

Thus any positive integer has an iterate that is not divisible by 3. We now
present three technical lemmas that will be used in step two. We start by reproving
a stronger version of [Wir, Lemma 3.1].

Lemma 3.3. For any s ∈ F , there exists q0 ∈ N − 3N such that for any q ∈ Z+,

s ∈ E (q) ⇔ q ≡
3l(s)

q0.

Proof. Let s ∈ F . We have that s =
(
s0, s1, . . . , sl(s)

)
for some natural numbers

s0, s1, . . . , sl(s). Let q ∈ Z+. If l (s) = 0, then vs (q) = 2s0q ∈ Z+ so that s ∈ E (q).
Thus the theorem is satisfied trivially in this case.
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Assume l (s) ≥ 1. There exists t ∈ N such that 2t ≡
3l(s)

1 since 2 is relatively

prime to 3l(s). Let w = 3l(s)r (s). By the definition of r (s), we have

w = 3l(s)

l(s)−1∑
j=0

2j+s0+s1+...+sj 3−(j+1)(3.2)

= 3l(s)

⎛
⎝2l(s)−1+s0+s1+...+sl(s)−13−l(s) +

l(s)−2∑
j=0

2j+s0+s1+...+sj 3−(j+1)

⎞
⎠

= 2l(s)−1+s0+s1+...+sl(s)−1 + 3
l(s)−2∑
j=0

2j+s0+s1+...+sj 3l(s)−j−2,

which shows that w ∈ Z+ and 3 � w. Define q0 = t||s||w. Since 3 � t as well,
q0 ∈ N − 3N. By Lemma 2.2,

vs (q) = c (s) q − r (s) = 3−l(s)
(
2‖s‖q − 3l(s)r (s)

)
= 3−l(s)

(
2‖s‖q − w

)
.

We have that

s ∈ E (q) ⇔ vs (q) ∈ Z+

⇔ 3−l(s)
(
2‖s‖q − w

)
∈ Z+

⇔ 3l(s) |
(
2‖s‖q − w

)
⇔ 2‖s‖q − w ≡

3l(s)
0

⇔ q ≡
3l(s)

t‖s‖w

⇔ q ≡
3l(s)

q0,

which completes the proof. �

The second technical lemma demonstrates that any feasible vector can be con-
catenated with a vector of length zero to make it admissible for any given natural
number relatively prime to 3.

Lemma 3.4. For any s ∈ F and any y ∈ N − 3N, there exists a natural number
k such that s · (k) ∈ E (y) .

Proof. Let s ∈ F . Let y ∈ N − 3N. By Lemma 3.3, there exists q0 ∈ N − 3N such
that for any q ∈ Z+, s ∈ E (q) ⇔ q ≡

3l(s)
q0.

Since 2 is a primitive root for 3l(s) (cf. [Hua]), we have that 2ky ≡
3l(s)

q0 for some

k ∈ Z+. Thus s ∈ E
(
2ky

)
, so by Lemma 2.3 we have

vs·(k) (y) =
(
vs ◦ v(k)

)
(y) = vs

(
T−k

0 (y)
)

= vs

(
2ky

)
∈ Z+.

Therefore s · (k) ∈ E (y). �

For the third technical lemma, again using vs (x) = c (s)x − r (s) as in Lemma
2.2, we prove two facts about r (s). Namely, we show that any finite increasing
sequence can appear in the exponents of the 2-powers in the formula for r (s), and



SUFFICIENCY OF ARITHMETIC PROGRESSIONS 2867

for a given positive integer b relatively prime to 2 and 3, all elements of Zb can be
obtained as r (s) for some s.

Lemma 3.5. Let b be a positive integer relatively prime to 2 and 3.
(i) Let t1, t2, ..., td be a strictly increasing sequence of natural numbers. Then

there exists some s ∈ F such that vs (x) = 2||||3−dx −
d∑

i=1

2ti3−i.

(ii) Let n, m, k ∈ Z. There exists an s ∈ F such that vs ∈ Gb is given by vs (x) =
2n3mx+ k. Furthermore, there exist increasing natural numbers u1, u2, . . . , ud such

that
d∑

i=1

2ui3−i ≡
b

k.

Proof. (i) Define s0 = t1 and si = ti+1 − ti − 1 for i ∈ {1, 2, ..., d − 1}. The sum
j∑

i=0

si is a telescoping sum, so by induction on j,
j∑

i=0

si = tj+1 − j for any j ∈

{0, 1, ..., d − 1}.
Now take s = (s0, s1, ..., sd−1, 0). Then l (s) = d. By Lemma 2.2, we see that

vs (x) ≡
b

2||s||3−dx −
d−1∑
j=0

2

(
j+

j∑
i=0

si

)
3−(j+1)

= 2||s||3−dx −
d−1∑
j=0

2tj+13−(j+1),

and we are done.
(ii) The function h (x) = 2n3mx−k is an element of Gb by Lemma 3.1. Since Gb

is generated by T0 and T1, h = T1
eg ◦ T0

eg−1 ◦ . . . ◦T1
e4 ◦T0

e3 ◦T1
e2 ◦T0

e1 for some
g, e1, e2, . . . , eg ∈ N. Let σ0 and σ1 be the orders of T0 and T1 respectively, as in the
proof of Lemma 3.1. By decreasing ei by a multiple of σ0 for odd i and decreasing ei

by a multiple of σ1 for even i as necessary, we can create a sequence of nonpositive
integers e′1, e

′
2, . . . , e

′
g such that h = T1

e′
g ◦ T0

e′
g−1 ◦ . . . ◦ T1

e′
4 ◦ T0

e′
3 ◦ T1

e′
2 ◦ T0

e′
1 .

Thus there exists an s ∈ F with vs = h, so vs (x) = 2n3mx − k. Since vs (x) =
c (s)x − r (s), we have

(3.3) r (s) = −vs (0) ≡
b
−h (0) = k.

Define
uj = (j − 1) + s0 + s1 + ... + sj−1

for j ∈ {1, . . . , l (s)}. Clearly u1, u2, ..., ul(s)−1 is strictly increasing, since Lemma
2.2 implies that

l(s)∑
j=1

2uj 3−j =
l(s)−1∑
j=0

2j+s0+s1+...+sj 3−(j+1)

= r (s)
≡
b

k

by (3.3). �

We now complete the second step in the proof of the main result.
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Lemma 3.6. Let b be a positive integer relatively prime to 2 and 3 and let n ∈ N.
For every x ∈ Z+, there exists z ∈ Z+ such that z ≡

2nb
0 and z �≡

3
0 and x merges

with z.

Proof. Let x ∈ Z+. By Lemma 3.2, there exists y such that y �≡
3

0 and x merges

with y. We will produce an s ∈ E (y) such that vs (y) ≡
2nb

0 and vs (y) �≡
3

0.

We know that there exists an s1 ∈ F such that vs1 (x) ≡
b

x + 1 by part (ii) of

Lemma 3.5. Thus for any m ∈ N

(3.4) vm
s1

(x) ≡
b

x + m.

Lemma 3.4 allows us to choose n1 ∈ N such that (0, 0) · s1 · s1 · ... · s1︸ ︷︷ ︸
b

· (n1) ∈ E (y).

Let s2 = (0, 0) · s1 · s1 · ... · s1︸ ︷︷ ︸
b

· (n1). Since s2 is admissible for y, vt (y) ∈ Z+ for any

terminal part t of s2 by Lemma 2.4. So v(n1) (y) ≡
b

a for some a ∈ {0, 1, 2, ..., b − 1}.
Define s3 = s1 · s1 · ... · s1︸ ︷︷ ︸

b−a

· (n1). This gives us

vs3 (y) = vs1 · s1 · ... · s1︸ ︷︷ ︸
b−a

·(n1) (y)

= vb−a
s1

(
v(n1) (y)

)
by Lemma 2.3

≡
b

vb−a
s1

(a)

≡
b

a + (b − a) by (3.4)

≡
b

0.

Define s4 = (0, 0) ·s1 · s1 · . . . · s1︸ ︷︷ ︸
a

. By Lemma 2.3,

vs4 (vs3 (y)) = vs4·s3 (y) = vs2 (y) ∈ N.

Thus s4 ∈ E (vs3 (y)). Since l (s4) is positive, vs3 (y) �≡
3

0 by Lemma 2.5.

Define s = (n) · s3. We have that

vs (y) = v(n)·s3 (y) = v(n) (vs3 (y)) = 2nvs3 (y) ∈ N.

Thus s ∈ E (y). Define z = vs (y). Since vs3 (y) �≡
3

0, we have 2nvs3 (y) �≡
3

0. Thus

z �≡
3

0.

Since vs3 (y) ≡
b

0, we have 2nvs3 (y) ≡
2nb

0. Thus z ≡
2nb

0.

Lemma 2.1 implies that y = T ||s|| (vs (y)), so y = T ||s|| (z). Thus y merges with
z, and x merges with y, so x merges with z. �

We now provide a technical lemma in preparation for the final step.

Lemma 3.7. Let s ∈ F and let m, q0 ∈ N. Then there exists p0 ∈ N−3N such that
for any p ∈ Z+, if p ≡

3l(s)+m
p0, then s ∈ E (p) and vs (p) ≡

3m
q0.
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Proof. Define w = 3l(s)r (s), as in Lemma 3.3. Again by (3.2), w ∈ Z+ and 3 � w.
Since 2 is relatively prime to 3l(s)+m, there exists some t ∈ Z+ such that 2t ≡

3l(s)+m

1. Define p0 = t||s||
(
3l(s)q0 + w

)
. Note that 3 � p0 since 3 � t and 3 � w. Let p ∈ Z+

and assume p ≡
3l(s)+m

p0.

2||s||p − w ≡
3l(s)+m

2||s||
(
t||s||

(
3l(s)q0 + w

))
− w(3.5)

≡
3l(s)+m

2||s||t||s||3l(s)q0 + 2||s||t||s||w − w

≡
3l(s)+m

1||s||3l(s)q0 + 1||s||w − w

≡
3l(s)+m

3l(s)q0.

Thus 3l(s) | 2‖s‖p−w, so 2||s||p−w
3l(s) ∈ Z+. From Lemma 2.2 we have that vs (p) =

2‖s‖

3l(s) p − r (s) = 2‖s‖p−w
3l(s) , so vs (p) ∈ Z+ and s ∈ E (p). Division of both sides and

the modulus of (3.5) by 3l(s) yields that vs (p) ≡
3m

q0. �

In the third and final step we use z as our stepping-stone to show that any
positive integer x can merge with a, a number that is in whatever congruence class
we desire.

Lemma 3.8. Let b be a positive integer relatively prime to 2 and 3 and let n, m ∈
N. For every x ∈ Z+ and for any a0, q0 ∈ N, there exists an a ∈ Z+ such that
a ≡

2nb
a0 and a ≡

3m
q0 and x merges with a.

Proof. Let x ∈ Z+. By Lemma 3.6, there exists an z ∈ Z+ such that z ≡
2nb

0 and

z �≡
3

0, and x merges with z. Let a0, q0 ∈ N. We have a0 ≡
2nb

a1 + 2na2 for some

a1 ∈ {0, 1, 2, ..., 2n − 1} and a2 ∈ {0, 1, 2, ..., b − 1}.
We now show that there exists an odd natural number τ such that 3τ ≡

2nb
1. If

n = 0, we can take any natural number t with 3t ≡
b

1 and either set τ = t (in the

case that t is odd) or τ = t+ b (in the case that t is even). Otherwise if n > 0, then
any τ ∈ N such that 3τ ≡

2nb
1 satisfies 2nb | (3τ − 1) which implies that τ is odd.

There exists an increasing sequence of natural numbers t1, t2, ..., th1 with th1 <

n such that
h1∑
i=1

2tiτ i ≡
2n

−a1 by Lemma 2.7. By the definition of congruence,

h1∑
i=1

2tiτ i = −a1 + 2ni1 for some i1 ∈ Z. There exist increasing natural numbers

u1, u2, ..., uh2 such that
h2∑
i=1

2uiτ i ≡
b

3h1 (−a2 − i1) by part (ii) of Lemma 3.5. There-

fore τh1
h2∑
i=1

2uiτ i ≡
b

(−a2 − i1), so by the definition of congruence, τh1
h2∑
i=1

2uiτ i =

−a2 − i1 + bi2 for some i2 ∈ Z. Define

wi =

{
ti if 1 ≤ i ≤ h1,

n + ui−h1 if h1 + 1 ≤ i ≤ h1 + h2.
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That is, wi is the ith term of the sequence t1, t2, . . . , th1 , n + u1, n + u2, ..., n +
uh2 . Since ti and ui are increasing and th1 < n, the sequence w1, w2, . . . , wh1+h2 is
also increasing. So

h1+h2∑
i=1

2wiτ i =
h1∑
i=1

2wiτ i +
h1+h2∑
i=h1+1

2wiτ i

=
h1∑
i=1

2tiτ i +
h2∑
i=1

2wi+h1 τ i+h1

= (−a1 + 2ni1) + τh1

h2∑
i=1

2n+uiτ i

= −a1 + 2ni1 + 2n

(
τh1

h2∑
i=1

2uiτ i

)

= −a1 + 2ni1 + 2n (−a2 − i1 + bi2)
= −a1 − 2na2 + 2nbi2

≡
2nb

−a1 − 2na2

≡
2nb

−a0.

Thus there exists an increasing sequence w1, w2, . . . , wh1+h2 such that
h1+h2∑

i=1

2wiτ i ≡
2nb

h1+h2∑
i=1

2wi3−i ≡
2nb

−a0, so by part (i) of Lemma 3.5 there exists an s1 ∈ F such that

(3.6) vs1 (x) ≡
2nb

2||s1||3−l(s1)x + a0.

By Lemma 3.7 there exists p0 ∈ N− 3N such that for all p ∈ Z+, if p ≡
3l(s1)+m

p0,

then s1 ∈ E (p) and vs1 (p) ≡
3m

q0. Since 2 is a primitive root for 3l(s1)+m (cf. [Hua])

and z is a unit mod 3l(s1)+m, there exists n2 ∈ Z+ such that 2n2z ≡
3l(s1)+m

p0. Thus

s1 ∈ E (2n2z) and vs1 (2n2z) ≡
3m

q0. Define s = s1 · (n2). By Lemma 2.3,

vs (z) = vs1·(n2) (z) = vs1

(
v(n2) (z)

)
= vs1 (2n2z) .

Therefore s ∈ E (z), so vs (z) ∈ Z+ and vs (z) ≡
3m

q0. Defining a = vs (z), we have
a ≡

3m
q0.

Note that 2n2z is divisible by 2nb, since z is also divisible. Thus 2n2z ≡
2nb

0, so

that

a = vs (z)

= vs1 (2n2z)

≡
2nb

vs1 (0)

≡
2nb

a0 by (3.6).

By Lemma 2.1, T ‖s‖ (a) = z. Thus z merges with a, and x merges with z, so x
merges with a. �
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Since the previous lemma shows that any positive integer x merges with an
integer a that can be in any desired congruence classes modulo 2nb and modulo
3m, we are prepared to prove the main result.

Proof of Theorem 1.1. Let S be an arithmetic progression. Let x ∈ Z+. We have
that S = A + BN for some nonnegative integers A and B with B �= 0. There exists
some k ∈ Z+ such that kB > A. We can write kB = 2n3mb for some n,m ∈ Z+

and b ∈ Z+ relatively prime to 2 and 3. By Lemma 3.8, there exists an a ∈ Z+

such that a ≡
2nb

A and a ≡
3m

A, and x merges with a. Thus a ≡
2nb3m

A since 2nb and

3m are relatively prime, and both divide a − A. Hence a = A + kBk1 for some
k1 ∈ Z. However, k1 > 0 since a is positive and kB > A. Thus k1 ∈ N and a ∈ S.
Therefore every positive integer merges with an element of S. So, S is a sufficient
set. �

The proofs of the corollaries then easily follow from the main result.

Proof of Corollary 1.2. Let S be an arithmetic progression and assume that for ev-
ery a ∈ S, limj→∞ T j (a) �= ∞. Let x ∈ Z+. Then x merges with a for some a ∈ S by
Theorem 1.1. Since x and a merge, their orbits are not disjoint, so T j1 (x) = T j2 (a)
for some j1,j2 ∈ Z+. Therefore for every j ∈ Z+, T j1+j (x) = T j2+j (a) . Thus
limj→∞ T j (x) �= ∞ as well. So no positive integer has a divergent orbit, and the
Divergent Orbits Conjecture holds. Thus S is sufficient for the Divergent Orbits
Conjecture. �

Proof of Corollary 1.3. Let S be an arithmetic progression and assume that no
element of S has an orbit that contains a nontrivial cycle. Let x ∈ Z+. There
exists some a ∈ S such that x merges with a by Theorem 1.1. Assume the orbit
of x contains a nontrivial cycle. Since x and a merge, their orbits are not disjoint,
so T j1 (x) = T j2 (a) for some j1,j2 ∈ Z+. Therefore for every j ∈ Z+, T j1+j (x) =
T j2+j (a), so the orbit of a contains a nontrivial cycle as well, contradicting the
assumption. Thus no positive integer has an orbit that contains a nontrivial cycle,
and the Nontrivial Cycles Conjecture holds. Thus S is sufficient for the Nontrivial
Cycles Conjecture. �
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