A remark on the monomial conjecture and Cohen-Macaulay canonical modules
HTML articles powered by AMS MathViewer
- by Le Thanh Nhan
- Proc. Amer. Math. Soc. 134 (2006), 2785-2794
- DOI: https://doi.org/10.1090/S0002-9939-06-08573-X
- Published electronically: May 4, 2006
- PDF | Request permission
Abstract:
In this paper, some sufficient conditions for rings and modules to satisfy the monomial conjecture are given. A characterization of Cohen-Macaulay canonical modules is presented.References
- Nguyễn Tụ’ Cu’ò’ng, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 479–488. MR 1094747, DOI 10.1017/S0305004100069929
- Nguyen Tu Cuong and Nguyen Duc Minh, Lengths of generalized fractions of modules having small polynomial type, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 2, 269–282. MR 1735305, DOI 10.1017/S0305004199003941
- Nguyen Tu Cuong, Nguyen Thai Hoa, and Nguyen Thi Hong Loan, On certain length functions associated to a system of parameters in local rings, Vietnam J. Math. 27 (1999), no. 3, 259–272. MR 1811339
- Nguyen Tu Cuong and Le Thanh Nhan, Pseudo Cohen-Macaulay and pseudo generalized Cohen-Macaulay modules, J. Algebra 267 (2003), no. 1, 156–177. MR 1993472, DOI 10.1016/S0021-8693(03)00225-4
- Nguyen Tu Cuong, Marcel Morales, and Le Thanh Nhan, The finiteness of certain sets of attached prime ideals and the length of generalized fractions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 109–121. MR 2038567, DOI 10.1016/j.jpaa.2003.11.006
- S. P. Dutta, A note on the monomial conjecture, Trans. Amer. Math. Soc. 350 (1998), no. 7, 2871–2878. MR 1466948, DOI 10.1090/S0002-9947-98-02158-8
- Shiro Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), no. 2, 490–534. MR 725097, DOI 10.1016/0021-8693(83)90109-6
- M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43. MR 349656, DOI 10.1017/S0027763000015701
- Melvin Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. MR 723406, DOI 10.1016/0021-8693(83)90092-3
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971 & Convegno di Geometria, INDAM, Rome, 1972) Academic Press, London, 1973, pp. 23–43. MR 0342506
- Peter Schenzel, On birational Macaulayfications and Cohen-Macaulay canonical modules, J. Algebra 275 (2004), no. 2, 751–770. MR 2052635, DOI 10.1016/j.jalgebra.2003.12.016
- R. Y. Sharp and M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra 38 (1985), no. 2-3, 323–336. MR 814188, DOI 10.1016/0022-4049(85)90020-9
- R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika 29 (1982), no. 1, 32–41. MR 673503, DOI 10.1112/S0025579300012134
- R. Y. Sharp and H. Zakeri, Generalized fractions and the monomial conjecture, J. Algebra 92 (1985), no. 2, 380–388. MR 778456, DOI 10.1016/0021-8693(85)90128-0
- Jan R. Strooker, Homological questions in local algebra, London Mathematical Society Lecture Note Series, vol. 145, Cambridge University Press, Cambridge, 1990. MR 1074178, DOI 10.1017/CBO9780511629242
- Jan R. Strooker and Jürgen Stückrad, Monomial conjecture and complete intersections, Manuscripta Math. 79 (1993), no. 2, 153–159. MR 1216771, DOI 10.1007/BF02568334
Bibliographic Information
- Le Thanh Nhan
- Affiliation: Department of Mathematics, Thai Nguyen Pedagogical University, Thai Nguyen, Vietnam
- Email: trtrnhan@yahoo.com
- Received by editor(s): January 11, 2005
- Published electronically: May 4, 2006
- Additional Notes: The author is a junior associate member of ICTP, Trieste, Italy
- Communicated by: Bernd Ulrich
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 2785-2794
- MSC (2000): Primary 13D45, 13H10
- DOI: https://doi.org/10.1090/S0002-9939-06-08573-X
- MathSciNet review: 2231599