Some upper bounds for sums of eigenvalues of the Neumann Laplacian
HTML articles powered by AMS MathViewer
- by Liangpan Li and Lan Tang
- Proc. Amer. Math. Soc. 134 (2006), 3301-3307
- DOI: https://doi.org/10.1090/S0002-9939-06-08355-9
- Published electronically: May 12, 2006
- PDF | Request permission
Abstract:
Let $\mu _{k}(\Omega )$ be the $k$th Neumann eigenvalue of a bounded domain $\Omega$ with piecewisely smooth boundary in $\textbf {R}^{n}$. In 1992, P. Kröger proved that $k^{-\frac {n+2}{n}}\sum _{j=1}^{k}\mu _{j}\leq {4n\pi ^{2}\over n+2}( \omega _{n}V)^{-2/n}$, where the upper bound is sharp in view of Weyl’s asymptotic formula. The aim of this paper is twofold. First, we will improve this estimate by multiplying a factor in terms of $k$ to its right-hand side which approaches strictly from below to 1 as $k$ tends to infinity. Second, we will generalize Kröger’s estimate to the case when $\Omega$ is a compact Euclidean submanifold.References
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR 1103113
- B. Ërikke and V. P. Khavin, The uncertainty principle in harmonic analysis, Commutative harmonic analysis, 3 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1991, pp. 181–260, 267 (Russian). MR 1129019
- L. Hermi, Research Statement - December 2003. http://math.arizona.edu/ hermi/rp.pdf.
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Oleg Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc. 129 (2001), no. 10, 3037–3047. MR 1840110, DOI 10.1090/S0002-9939-01-05926-3
- P. Kröger, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space, J. Funct. Anal. 106 (1992), no. 2, 353–357. MR 1165859, DOI 10.1016/0022-1236(92)90052-K
- Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919
- Antonios D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003), no. 2, 631–636. MR 1933356, DOI 10.1090/S0002-9939-02-06834-X
- R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; With a preface translated from the Chinese by Kaising Tso. MR 1333601
- Hermann Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479 (German). MR 1511670, DOI 10.1007/BF01456804
Bibliographic Information
- Liangpan Li
- Affiliation: Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
- Email: liliangpan@yahoo.com.cn
- Lan Tang
- Affiliation: Department of Mathematics, Xidian University, Xi’an 710071, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
- Email: ltang@math.utexas.edu
- Received by editor(s): November 1, 2004
- Received by editor(s) in revised form: May 28, 2005
- Published electronically: May 12, 2006
- Communicated by: Richard A. Wentworth
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3301-3307
- MSC (2000): Primary 35P15; Secondary 58G25
- DOI: https://doi.org/10.1090/S0002-9939-06-08355-9
- MathSciNet review: 2231915