Packing spheres and fractal Strichartz estimates in $\mathbb {R}^d$ for $d\geq 3$
HTML articles powered by AMS MathViewer
- by Daniel M. Oberlin
- Proc. Amer. Math. Soc. 134 (2006), 3201-3209
- DOI: https://doi.org/10.1090/S0002-9939-06-08356-0
- Published electronically: May 11, 2006
- PDF | Request permission
Abstract:
We prove an estimate for the spherical average operator in $\mathbb {R}^d$ if $d\geq 3$. This leads to a lower bound for the Hausdorff dimension of unions of certain collections of spheres and to a Strichartz-type estimate for solutions of the wave equation.References
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no.ย 2, 147โ187. MR 1097257, DOI 10.1007/BF01896376
- M. Burak Erdogฬan, A note on the Fourier transform of fractal measures, Math. Res. Lett. 11 (2004), no.ย 2-3, 299โ313. MR 2067475, DOI 10.4310/MRL.2004.v11.n3.a3
- T. Mitsis, On a problem related to sphere and circle packing, J. London Math. Soc. (2) 60 (1999), no.ย 2, 501โ516. MR 1724841, DOI 10.1112/S0024610799007838
- Daniel M. Oberlin, $L^{p}-L^{q}$ mapping properties of the Radon transform, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp.ย 95โ102. MR 717229, DOI 10.1007/BFb0061889
- Daniel M. Oberlin, An estimate for a restricted X-ray transform, Canad. Math. Bull. 43 (2000), no.ย 4, 472โ476. MR 1793949, DOI 10.4153/CMB-2000-055-8
- D. Oberlin Restricted Radon transforms and unions of hyperplanes Rev. Mat. Iberoamericana, to appear.
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Michel Talagrand, Sur la mesure de la projection dโun compact et certaines familles de cercles, Bull. Sci. Math. (2) 104 (1980), no.ย 3, 225โ231 (French, with English summary). MR 592470
- T. Wolff, Local smoothing type estimates on $L^p$ for large $p$, Geom. Funct. Anal. 10 (2000), no.ย 5, 1237โ1288. MR 1800068, DOI 10.1007/PL00001652
Bibliographic Information
- Daniel M. Oberlin
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510
- Email: oberlin@math.fsu.edu
- Received by editor(s): May 10, 2005
- Published electronically: May 11, 2006
- Communicated by: Michael T. Lacey
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3201-3209
- MSC (2000): Primary 28A75, 35B45
- DOI: https://doi.org/10.1090/S0002-9939-06-08356-0
- MathSciNet review: 2231903