## Fixed point spaces, primitive character degrees and conjugacy class sizes

HTML articles powered by AMS MathViewer

- by I. M. Isaacs, Thomas Michael Keller, U. Meierfrankenfeld and Alexander Moretó PDF
- Proc. Amer. Math. Soc.
**134**(2006), 3123-3130 Request permission

## Abstract:

Let $G$ be a finite group that acts on a nonzero finite dimensional vector space $V$ over an arbitrary field. Assume that $V$ is completely reducible as a $G$-module, and that $G$ fixes no nonzero vector of $V$. We show that some element $g\in G$ has a small fixed-point space in $V$. Specifically, we prove that we can choose $g$ so that $\dim \mathbf {C}_V(g)\le (1/p)\dim V$, where $p$ is the smallest prime divisor of $|G|$.## References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*$\Bbb {ATLAS}$ of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219** - Silvio Dolfi,
*Prime factors of conjugacy class lengths and irreducible character degrees in finite soluble groups*, J. Algebra**174**(1995), no. 3, 749–752. MR**1337168**, DOI 10.1006/jabr.1995.1150 - Robert M. Guralnick and William M. Kantor,
*Probabilistic generation of finite simple groups*, J. Algebra**234**(2000), no. 2, 743–792. Special issue in honor of Helmut Wielandt. MR**1800754**, DOI 10.1006/jabr.2000.8357 - I. Martin Isaacs,
*Primitive characters, normal subgroups, and $M$-groups*, Math. Z.**177**(1981), no. 2, 267–284. MR**612879**, DOI 10.1007/BF01214205 - P. M. Neumann,
*A study of some finite permutation groups*, Ph.D. Thesis, Oxford, 1966. - Peter M. Neumann and M. R. Vaughan-Lee,
*An essay on BFC groups*, Proc. London Math. Soc. (3)**35**(1977), no. 2, 213–237. MR**463311**, DOI 10.1112/plms/s3-35.2.213 - Dan Segal and Aner Shalev,
*On groups with bounded conjugacy classes*, Quart. J. Math. Oxford Ser. (2)**50**(1999), no. 200, 505–516. MR**1726791**, DOI 10.1093/qjmath/50.200.505 - Thomas R. Wolf,
*Sylow $p$-subgroups of $p$-solvable subgroups of $\textrm {GL}(n,\,p)$*, Arch. Math. (Basel)**43**(1984), no. 1, 1–10. MR**758331**, DOI 10.1007/BF01193602

## Additional Information

**I. M. Isaacs**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, 480 Lincoln Drive, Madison, Wisconsin 53706
- Email: isaacs@math.wisc.edu
**Thomas Michael Keller**- Affiliation: Department of Mathematics, Texas State University, San Marcos, Texas 78666
- MR Author ID: 356408
- ORCID: 0000-0003-3901-8585
- Email: tk04@txstate.edu
**U. Meierfrankenfeld**- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: meier@math.msu.edu
**Alexander Moretó**- Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot, València, Spain
- ORCID: 0000-0002-6914-9650
- Email: Alexander.Moreto@uv.es
- Received by editor(s): June 2, 2005
- Published electronically: May 12, 2006
- Additional Notes: The fourth author was partially supported by the Spanish Ministerio de Educación y Ciencia, grants MTM2004-04665 and MTM2004-06067-C02-01, the FEDER and the Programa Ramón y Cajal
- Communicated by: Jonathan I. Hall
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**134**(2006), 3123-3130 - MSC (2000): Primary 20C99
- DOI: https://doi.org/10.1090/S0002-9939-06-08383-3
- MathSciNet review: 2231893