A family of maximal surfaces in Lorentz-Minkowski three-space
HTML articles powered by AMS MathViewer
- by Young Wook Kim and Seong-Deog Yang
- Proc. Amer. Math. Soc. 134 (2006), 3379-3390
- DOI: https://doi.org/10.1090/S0002-9939-06-08543-1
- Published electronically: May 8, 2006
- PDF | Request permission
Abstract:
We prove the existence of an infinite family of complete spacelike maximal surfaces with singularities in Lorentz-Minkowski three-space and study their properties. These surfaces are distinguished by their number of handles and have two elliptic catenoidal ends.References
- Luis J. Alías, Rosa M. B. Chaves, and Pablo Mira, Björling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289–316. MR 1972140, DOI 10.1017/S0305004102006503
- Eugenio Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–230. MR 0264210
- Shiu Yuen Cheng and Shing Tung Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR 431061, DOI 10.2307/1970963
- Francisco J. M. Estudillo and Alfonso Romero, Generalized maximal surfaces in Lorentz-Minkowski space $L^3$, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 515–524. MR 1151327, DOI 10.1017/S0305004100075587
- I. Fernández and F. López, Periodic maximal surfaces in the Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0412461 v3.
- I. Fernández, F. López and R. Souam, The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0311330 v2.
- I. Fernández, F. López and R. Souam, The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0412190 v1.
- S. Fujimori, K. Saji, M. Umehara, K. Yamada, Cuspidal crosscaps and singularities of maximal surfaces, Preprint.
- David Hoffman and William H. Meeks III, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), no. 1, 1–34. MR 1038356, DOI 10.2307/1971506
- Taishi Imaizumi, Maximal surfaces with conelike singularities of finite type, Kobe J. Math. 18 (2001), no. 1, 51–60. MR 1868796
- Taishi Imaizumi, Maximal surfaces with simple ends, Kyushu J. Math. 58 (2004), no. 1, 59–70. MR 2053719, DOI 10.2206/kyushujm.58.59
- Osamu Kobayashi, Maximal surfaces in the $3$-dimensional Minkowski space $L^{3}$, Tokyo J. Math. 6 (1983), no. 2, 297–309. MR 732085, DOI 10.3836/tjm/1270213872
- Osamu Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984), no. 4, 609–617. MR 759417, DOI 10.2969/jmsj/03640609
- Francisco J. López, Rafael López, and Rabah Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space $\Bbb L^3$, Michigan Math. J. 47 (2000), no. 3, 469–497. MR 1813540, DOI 10.1307/mmj/1030132590
- Wayne Rossman and Katsunori Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. 7 (1998), no. 2, 101–119. MR 1677103
- Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928
- M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, arXiv:math.DG/0307309 v6; to appear in Hokkaido Mathematical Journal.
- S.-D. Yang, Elliptic catenoids in $\mathbb {L}^3$ with an arbitrary number of handles, Proceedings of the International Workshop on Integral Systems, Geometry, and Visualization, Nov. 2004, Kyushu University, Fukuoka, Japan.
Bibliographic Information
- Young Wook Kim
- Affiliation: Department of Mathematics, Korea University, Seoul 136-713, Korea
- MR Author ID: 246496
- Email: ywkim@korea.ac.kr
- Seong-Deog Yang
- Affiliation: Department of Mathematics, Korea University, Seoul 136-713, Korea
- MR Author ID: 673171
- Email: sdyang@korea.ac.kr
- Received by editor(s): April 18, 2005
- Received by editor(s) in revised form: May 23, 2005
- Published electronically: May 8, 2006
- Communicated by: Richard A. Wentworth
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3379-3390
- MSC (2000): Primary 53A10, 53C50
- DOI: https://doi.org/10.1090/S0002-9939-06-08543-1
- MathSciNet review: 2231923