Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A family of maximal surfaces in Lorentz-Minkowski three-space
HTML articles powered by AMS MathViewer

by Young Wook Kim and Seong-Deog Yang PDF
Proc. Amer. Math. Soc. 134 (2006), 3379-3390 Request permission

Abstract:

We prove the existence of an infinite family of complete spacelike maximal surfaces with singularities in Lorentz-Minkowski three-space and study their properties. These surfaces are distinguished by their number of handles and have two elliptic catenoidal ends.
References
  • Luis J. Alías, Rosa M. B. Chaves, and Pablo Mira, Björling problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289–316. MR 1972140, DOI 10.1017/S0305004102006503
  • Eugenio Calabi, Examples of Bernstein problems for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–230. MR 0264210
  • Shiu Yuen Cheng and Shing Tung Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR 431061, DOI 10.2307/1970963
  • Francisco J. M. Estudillo and Alfonso Romero, Generalized maximal surfaces in Lorentz-Minkowski space $L^3$, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 515–524. MR 1151327, DOI 10.1017/S0305004100075587
  • I. Fernández and F. López, Periodic maximal surfaces in the Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0412461 v3.
  • I. Fernández, F. López and R. Souam, The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0311330 v2.
  • I. Fernández, F. López and R. Souam, The moduli space of embedded singly periodic maximal surfaces with isolated singularities in the Lorentz-Minkowski space $\mathbb {L}^3$, arXiv:math.DG/0412190 v1.
  • S. Fujimori, K. Saji, M. Umehara, K. Yamada, Cuspidal crosscaps and singularities of maximal surfaces, Preprint.
  • David Hoffman and William H. Meeks III, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), no. 1, 1–34. MR 1038356, DOI 10.2307/1971506
  • Taishi Imaizumi, Maximal surfaces with conelike singularities of finite type, Kobe J. Math. 18 (2001), no. 1, 51–60. MR 1868796
  • Taishi Imaizumi, Maximal surfaces with simple ends, Kyushu J. Math. 58 (2004), no. 1, 59–70. MR 2053719, DOI 10.2206/kyushujm.58.59
  • Osamu Kobayashi, Maximal surfaces in the $3$-dimensional Minkowski space $L^{3}$, Tokyo J. Math. 6 (1983), no. 2, 297–309. MR 732085, DOI 10.3836/tjm/1270213872
  • Osamu Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984), no. 4, 609–617. MR 759417, DOI 10.2969/jmsj/03640609
  • Francisco J. López, Rafael López, and Rabah Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space $\Bbb L^3$, Michigan Math. J. 47 (2000), no. 3, 469–497. MR 1813540, DOI 10.1307/mmj/1030132590
  • Wayne Rossman and Katsunori Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. 7 (1998), no. 2, 101–119. MR 1677103
  • Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928
  • M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, arXiv:math.DG/0307309 v6; to appear in Hokkaido Mathematical Journal.
  • S.-D. Yang, Elliptic catenoids in $\mathbb {L}^3$ with an arbitrary number of handles, Proceedings of the International Workshop on Integral Systems, Geometry, and Visualization, Nov. 2004, Kyushu University, Fukuoka, Japan.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53A10, 53C50
  • Retrieve articles in all journals with MSC (2000): 53A10, 53C50
Additional Information
  • Young Wook Kim
  • Affiliation: Department of Mathematics, Korea University, Seoul 136-713, Korea
  • MR Author ID: 246496
  • Email: ywkim@korea.ac.kr
  • Seong-Deog Yang
  • Affiliation: Department of Mathematics, Korea University, Seoul 136-713, Korea
  • MR Author ID: 673171
  • Email: sdyang@korea.ac.kr
  • Received by editor(s): April 18, 2005
  • Received by editor(s) in revised form: May 23, 2005
  • Published electronically: May 8, 2006
  • Communicated by: Richard A. Wentworth
  • © Copyright 2006 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 134 (2006), 3379-3390
  • MSC (2000): Primary 53A10, 53C50
  • DOI: https://doi.org/10.1090/S0002-9939-06-08543-1
  • MathSciNet review: 2231923