## A class of integral identities with Hermitian matrix argument

HTML articles powered by AMS MathViewer

- by Daya K. Nagar, Arjun K. Gupta and Luz Estela Sánchez PDF
- Proc. Amer. Math. Soc.
**134**(2006), 3329-3341 Request permission

## Abstract:

The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when the integrand is a scalar function of Hermitian matrix.## References

- Richard Bellman,
*A generalization of some integral identities due to Ingham and Siegel*, Duke Math. J.**23**(1956), 571–577. MR**81921** - N. R. Goodman,
*Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction)*, Ann. Math. Statist.**34**(1963), 152–177. MR**145618**, DOI 10.1214/aoms/1177704250 - A. K. Gupta and D. K. Nagar,
*Matrix variate distributions*, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 104, Chapman & Hall/CRC, Boca Raton, FL, 2000. MR**1738933** - A. E. Ingham, An integral which occurs in statistics,
*Proc. Cambridge Philos. Soc.*,**29**(1933), 271-276. - C. G. Khatri,
*Classical statistical analysis based on a certain multivariate complex Gaussian distribution*, Ann. Math. Statist.**36**(1965), 98–114. MR**192598**, DOI 10.1214/aoms/1177700274 - Murray S. Klamkin,
*Extensions of Dirichlet’s multiple integral*, SIAM J. Math. Anal.**2**(1971), 467–469. MR**286953**, DOI 10.1137/0502046 - Ingram Olkin,
*A class of integral identities with matrix argument*, Duke Math. J.**26**(1959), 207–213. MR**101223** - Ingram Olkin,
*Matrix extensions of Liouville-Dirichlet-type integrals*, Linear Algebra Appl.**28**(1979), 155–160. MR**549430**, DOI 10.1016/0024-3795(79)90129-0 - Ingram Olkin and Herman Rubin,
*Multivariate beta distributions and independence properties of the Wishart distribution*, Ann. Math. Statist.**35**(1964), 261–269. MR**160297**, DOI 10.1214/aoms/1177703748 - Carl Ludwig Siegel,
*Über die analytische Theorie der quadratischen Formen*, Ann. of Math. (2)**36**(1935), no. 3, 527–606 (German). MR**1503238**, DOI 10.2307/1968644 - B. D. Sivazlian,
*The generalized Dirichlet’s multiple integral*, SIAM Rev.**11**(1969), 285–288. MR**247014**, DOI 10.1137/1011048 - B. D. Sivazlian,
*A class of multiple integrals*, SIAM J. Math. Anal.**2**(1971), 72–75. MR**285680**, DOI 10.1137/0502008 - M. S. Srivastava,
*On the complex Wishart distribution*, Ann. Math. Statist.**36**(1965), 313–315. MR**172401**, DOI 10.1214/aoms/1177700294

## Additional Information

**Daya K. Nagar**- Affiliation: Departamento de Matemáticas, Universidad de Antioquia, Medellín, AA 1226, Colombia
- Email: nagar@matematicas.udea.edu.co
**Arjun K. Gupta**- Affiliation: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403-0221
- Email: gupta@bgnet.bgsu.edu
**Luz Estela Sánchez**- Affiliation: Departamento de Matemáticas, Universidad de Antioquia, Medellín, AA 1226, Colombia
- Email: lesanchez@matematicas.udea.edu.co
- Received by editor(s): June 10, 2003
- Received by editor(s) in revised form: November 5, 2004, and June 1, 2005
- Published electronically: May 12, 2006
- Additional Notes: The first and third authors were supported by the Comité para el Desarrollo de la Investigación, Universidad de Antioquia research grant no. IN387CE
- Communicated by: Richard A. Davis
- © Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**134**(2006), 3329-3341 - MSC (2000): Primary 33E99; Secondary 62H99
- DOI: https://doi.org/10.1090/S0002-9939-06-08602-3
- MathSciNet review: 2231918