ON THE BOUNDARIES OF SELF-SIMILAR TILES IN \(\mathbb{R}^1 \)

XING-GANG HE

(Communicated by Michael T. Lacey)

Abstract. The aim of this note is to study the construction of the boundary of a self-similar tile, which is generated by an iterated function system \(\{ \phi_i(x) = \frac{1}{N}(x + d_i) \}_{i=1}^N \). We will show that the boundary has complicated structure (no simple points) in general; however, it is a regular fractal set.

1. Introduction

Let \(N \) be a positive integer and let \(D = \{ d_1, d_2, \ldots, d_q \} \subset \mathbb{R} \) be a set of real numbers. In this note we consider an iterated function system (IFS) \(\{ \phi_i(x) \}_{i=1}^q \) defined as
\[
\phi_i(x) = \frac{1}{N}(x + d_i), \quad i = 1, 2, \ldots, q.
\]
It is well known that there exists a unique nonempty compact set \(T \) satisfying
\[
T = \bigcup_{i=1}^q \phi_i(T)
\]
(see, e.g., [F]). We call \(T \) a self-similar set. If \(T \), written as \(T(N, D) \), has nonempty interior and \(q = N \), \(T \) is termed a self-similar tile. It was proved by Kenyon [K] and Lagarias and Wang [LW] that, if \(T \) is a self-similar tile, the set \(D \) can be rationalized, that is, there exist real numbers \(a \) and \(c \) such that \(D = cD' + a \) and \(D' \subset \mathbb{Z} \). We will mainly study the geometric properties of self-similar tiles, so we can assume that \(D \) lies in \(\mathbb{Z} \).

Without loss of generality we can assume that \(d_1 = 0 < d_2 < \cdots < d_q \) throughout this paper.

Now we introduce the concept product form defined by Odlyzko [O] and Lagarias and Wang [LW2]. Denote \(E + F := \{ x + y : x \in E, \ y \in F \} \) for any two sets \(E \) and \(F \). For the given \(N, D \) is said to have the product form if there is a residue system \(\mathcal{E} \) (mod \(N \)) with \(0 \in \mathcal{E} \) so that
\[
\mathcal{E} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots + \mathcal{E}_k
\]
with all sums distinct and
\[
D = N^{l_1}\mathcal{E}_1 + N^{l_2}\mathcal{E}_2 + \cdots + N^{l_k}\mathcal{E}_k,
\]
where \(N \) is the scaling factor.
where \(0 \in E_i \) for \(1 \leq i \leq k \), \(#E_i\), the cardinality of \(E_i \), is larger than one and all \(l_i \), are integers with \(0 \leq l_1 \leq l_2 \leq l_3 \leq \cdots \leq l_k \). \(D \) is said to have the strict product form if \(E = \{0, 1, \ldots, N-1\} \). For example, for \(N = 4 \), \(D_1 = \{0, 1\} + 4\{0, 2\} = \{0, 1, 8, 9\} \) is a strict product form and \(D_2 = \{0, 5\} + 4\{0, 2\} = \{0, 5, 8, 13\} \) is a (not strict) product form.

Theorem 1.1 ([1], [LW2]). If \(D \) has the product form, then the self-similar set \(T(N, D) \) is a self-similar tile. Moreover, \(T(N, D) \) is a union of finite closed intervals if and only if \(D \) has the strict product form.

The sufficient condition (\(D \) is a product form) in Theorem 1.1 is far from being necessary. In general it is difficult to characterize the set \(D \) for an integer \(N \) so that \(T(N, D) \) is a tile; only the case \(N = p^n \) and \(N = pr \), where \(p \) and \(r \) are prime, was solved by Lagarias and Wang [LW2], Lau and Rao [LR] respectively. Theorem 1.1 implies that the interior of a tile \(T(N, D) \) contains an infinite number of disjoint open intervals if \(D \) is not a strict product form. What can we say about the construction of the tile in this case?

Some notions and initial ideas come from Xu [X]. Let \(x \in \partial T \) be a point on the boundary of \(T \); \(x \) is called a simple point if there exists \(\epsilon > 0 \) such that either \((x - \epsilon, x) \cap T = \emptyset \) and \((x, x + \epsilon) \cap T = (x, x + \epsilon) \) or \((x - \epsilon, x) \cap T = (x - \epsilon, x) \) and \((x, x + \epsilon) \cap T = \emptyset \).

Theorem 1.2. If \(T = T(N, D) \) is a self-similar tile but \(D \subset \mathbb{Z} \) is not a strict product form, then the boundary \(\partial T \) of \(T \) contains no simple points.

Theorem 1.2 implies that \(\partial T \) is a nonempty compact set which has no isolated points. Then it contains infinite members. Moreover we have the following result:

Theorem 1.3. If \(T = T(N, D) \) is a self-similar tile but \(D \subset \mathbb{Z} \) is not a strict product form, then the boundary \(\partial T \) of \(T \) is a fractal, that is, \(0 < \text{dim}_H \partial T < 1 \).

We remark that \(\text{dim}_H \partial T < 1 \) was already established in Strichartz and Wang [SW]. Also the above two theorems no longer hold in the nonuniform dilations setting. For example, let \(f_1(x) = \frac{2}{3}x \), \(f_2(x) = \frac{2}{3}x + \frac{1}{3} \) and \(f_3(x) = \frac{2}{3}x + \frac{8}{3} \). Then it can be checked that the self-similar set is

\[
T = \bigcup_{k=0}^{\infty} \left[1 - \frac{1}{3^{2k}}, 1 - \frac{1}{3^{2k+1}} \right] \cup \{1\}.
\]

Then \(\partial T \) has simple points and \(\text{dim}_H \partial T = 0 \). For the definitions of Hausdorff and box dimensions we refer to [E]. In general we have

Theorem 1.4. Let \(T = T(N, D) \) be a self-similar set with \(D \subset \mathbb{Z} \) and \(\#D = q \geq N \). Then \(\partial T \) is a regular set, i.e., \(\text{dim}_H \partial T = \text{dim}_B \partial T \).

2. Proof of Theorem 1.2

Throughout this section we shall assume that the digit set \(D \) for the self-affine tile \(T(N, D) \) has the form \(D = \{0,d_2,\ldots,d_N\} \) with \(d_j \in \mathbb{Z} \) and \(0 < d_2 < \cdots < d_N \).

Let \(\Sigma_q = \{1, 2, \ldots, q\} \), \(\Sigma_q^* = \{(i_1, i_2, \ldots, i_n) : \text{all } i_j \in \Sigma_q \} \) and \(\Sigma_q^* = \bigcup_{n=1}^{\infty} \Sigma_q^n \). For the IFS \(\phi_i = \frac{1}{d_i}(x + d_i) \), \(i = 1, 2, \ldots, q \), and \(\sigma = (i_1, i_2, \ldots, i_n) \in \Sigma_q^n \), as usual we define \(\phi_\sigma(x) = \phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_n}(x) \), the composition of \(\phi_{i_s} \) (\(1 \leq s \leq n \)).
say that an IFS \(\{ \phi_i(x) \}_{i=1}^q \) satisfies the open set condition (OSC) if there exists a nonempty open set \(O \) (bounded) such that
\[
\bigcup_{i=1}^q \phi_i(O) \subseteq O \quad \text{and} \quad \phi_i(O) \cap \phi_j(O) = \emptyset \quad \forall i \neq j.
\]

We remark that an IFS which generates a self-similar tile satisfies the OSC. This property will be used in the following. We say that a sequence of open intervals \(\{(a_n, b_n)\}_{n=1}^\infty \) is monotonically decreasing to \(a \) if \(b_{n+1} < a_n \) for all \(n \geq 1 \) and \(\lim_{n \to \infty} a_n = a \); Similarly a sequence of open intervals \(\{(a_n, b_n)\}_{n=1}^\infty \) is monotonically increasing to \(b \) if \(b_n < a_{n+1} \) for all \(n \geq 1 \) and \(\lim_{n \to \infty} b_n = b \). Since \(T \) can be expressed explicitly as
\[
T = \left\{ \sum_{k=1}^\infty N^{-k}d_k : d_k \in \mathcal{D} \right\},
\]
clearly \(T \subset [0, d_\eta/(N - 1)] \).

Lemma 2.1. Let \(T(N, \mathcal{D}) \) be a self-similar tile and let \(a_1 = 0 \). Suppose that \(T \cap [0, b_1] = \bigcup_{i=1}^k [a_i, b_i] \) with \(b_1 < a_{i+1}, \ i = 1, 2, \ldots, k - 1 \), and \(b_k \in \partial T \). Then \(b_k \) is a simple point.

Proof. Suppose that \(b_k \) is not a simple point. Then there exists a sequence of open intervals \(\{(\alpha_n, \beta_n)\}_{n=1}^\infty \) monotonically decreasing to \(b_k \) satisfying \((\alpha_n, \beta_n) \subseteq T \) and for each \(n \geq 1 \) there is an open interval \((\alpha_n', \beta_n') \subseteq (\beta_{n+1}, \alpha_n) \) such that \((\alpha_n', \beta_n') \cap T = \emptyset \). Note that \(T = \bigcup_{i=1}^k \phi_i(T) \) and \(\phi_1(b_k) = b_k / N < b_k \). Then there exists \(i \in \{1, \ldots, k\} \) such that \(\phi_i(b_k) \in [a_i, b_i] \). We claim that \(\phi_1(b_k) \neq b_k \). In fact, if \(\phi_1(b_k) = b_k \), since the sequence \(\{(\alpha_n, \beta_n)\}_{n=1}^\infty \) is monotonically decreasing to \(b_k \), then \(\phi_1(\alpha_n, \beta_n) \subseteq (b_k, a_{i+1}) \) for large enough, which contradicts \(\phi_1(T) \subseteq T \). Hence \(\phi_1(b_k) \in [a_i, b_i] \).

Now we show that \(\phi_1(b_k) < \phi_2(a_k) \). Suppose otherwise, that is, \(\phi_1(b_k) \in \phi_2((a_k, b_k)) \). Then for \(n \) large enough, we have \(\phi_1((\alpha_n, \beta_n)) \subseteq \phi_2((a_k, b_k)) \), which contradicts the OSC. Hence \(\phi_1(b_k) < \phi_2(a_k) \). In this case there is an integer \(m \) such that \(\phi_1((\alpha_n', \beta_n')) \subseteq [a_i, b_i] \) and \(\phi_1(\beta_n') < \phi_2(a_k) \) for all \(n \geq m \). This implies that \(\bigcup_{n=m}^\infty \phi_1((\alpha_n', \beta_n')) \) can be covered by \(\bigcup_{n=2}^{m+1} \bigcup_{j=1}^k \phi_1([a_i, b_j]) \). Thus one of the intervals of the latter contains two adjacent intervals of the former, which contradicts the OSC again by the definitions of the sequences. So the result follows.

Lemma 2.2. Let \(T(N, \mathcal{D}) \) be a self-similar tile and let \(a_1 = 0 \). Suppose that \(T \cap [0, a_{k+1}] = a_{k+1} + \bigcup_{i=1}^k [a_i, b_i] \) with \(b_1 < a_{i+1}, \ i = 1, 2, \ldots, k \). Then \(a_{k+1} \) is a simple point.

Proof. Let \(\eta = a_{k+1} - b_k > 0 \) and choose \(n \) such that, for any \(\sigma \in \Sigma_N^\eta \), the diameter of \(\phi_\sigma(T) \) is less than \(\eta \). Since \(T = \bigcup_{\sigma \in \Sigma_N} \phi_\sigma(T) \), there exists \(\sigma \in \Sigma_N \) such that \(a_{k+1} \in \phi_\sigma(T) \). Observing \((b_k, a_{k+1}) \cap T = \emptyset \) and the choice of \(n \), we have \(a_{k+1} = \phi_\sigma(0) \), and thus \(a_{k+1} \) is the left end point of the closed interval \(\phi_\sigma([0, b_k]) \) which is contained in \(T \). This implies that \(a_{k+1} \) is a simple point.

Lemma 2.3. Suppose that \(T = T(N, \mathcal{D}) \) is a self-similar tile but \(\mathcal{D} \) is not of the strict product form. Then both \(0 \) and \(d_\eta/(N - 1) \) are not simple points.

Proof. Suppose that \(0 \) is a simple point of \(\partial T \). Since \(\mathcal{D} \) is not of the strict product form, the interior \(T^0 \) of \(T \) consists of countable disjoint open intervals without
common end points. Let \(b_1 = \max \{ x : [0, x] \subseteq T \} \); then by Lemma 2.1 \(b_1 \) is a simple point. Denote by \(a_2 \) the smallest point in \(T \) which is larger than \(b_1 \). By Lemma 2.2 the point \(a_2 \) is simple too. With the same idea it is easy to see that there exists a point \(a \in T \) and a monotonically increasing sequence \(\{(a_n, b_n)\}_{n=1}^{\infty} \) which converges to \(a \) such that \(a_1 = 0 \) and

\[
T \cap [0, a] = \bigcup_{n=1}^{\infty} [a_n, b_n] \cup \{a\}.
\]

It is obvious that there exists an \(i \) such that \(\phi_1(a) \in (a_i, \phi_1(a)) \) and \(m_1 \) such that \(\phi_1([a_n, b_n]) \subset (a_i, \phi_1(a)) \) for \(n \geq m_1 \). Since \(\phi_j(a) > \phi_1(a) \) for \(j \geq 2 \), there exists \(m_2 \) such that \(\phi_j(a_n) > \phi_1(a) \) for \(n \geq m_2 \) and \(2 \leq j \leq N \). Let \(m = \max \{m_1, m_2\} \). Hence \(\bigcup_{s=m}^{\infty} \phi_1((b_s, a_{s+1})) \subset (a_i, \phi_1(a)) \) can be covered by \(\bigcup_{j=1}^{N} \bigcup_{n=1}^{m} \phi_j([a_n, b_n]) \). This is impossible by the proof of Lemma 2.4. Hence \(0 \) is not a simple point. The proof of the result about the point \(d_N/(N-1) \) is similar (symmetric).

Proof of Theorem 1.2 Suppose that \(a \in \partial T \) is a simple point. By the definition of a simple point, without loss of generality we assume that \((a - \epsilon, a) \cap T = \emptyset \) and \((a, a + \epsilon) \cap T = (a, a + \epsilon) \) for some \(\epsilon > 0 \). Similar to the proof of Lemma 2.2 we choose \(n \) so that the diameter of \(\phi_\sigma(T) \) is less than \(\epsilon \) for all \(\sigma \in \Sigma_N^+ \). Then there exists a \(\sigma \in \Sigma_N^+ \) satisfying \(a = \phi_\sigma(0) \). Note that, for different \(\sigma' \in \Sigma_N^+ \), either \(\max_{x \in T} \phi_{\sigma'}(x) \leq a - \epsilon \) or \(\phi_{\sigma'}(0) \geq \phi_{\sigma}(0) + N^{-n} \) by OSC. This implies that \([a, a + N^{-n}] \cap T = [a, a + N^{-n}] \cap \phi_\sigma(T) \), which leads to \(a = \phi_\sigma(0) \) is not a simple point by Lemma 2.3. The result follows from this contradiction.

3. **Proofs of Theorems 1.3 and 1.4**

In this section we prove Theorems 1.3 and 1.4. Note that the IFS \(\{\phi_i(x) = \frac{1}{N}(x + d_i)\}_{i=1}^{q} \) does not satisfy the OSC in general, which causes some difficulties in studying the dimensions. To overcome these difficulties several methods have been used. Here we follow the approach of [HLR] to obtain a graph-directed system with OSC such that one of the graph-directed sets is \(\partial T \). A different method was used in [SW]. Since \(T(N, D) \subseteq [0, d_q/(N-1)] \), let \(b \) be the minimal integer which is larger than or equal to \(d_q/(N-1) \). We construct an auxiliary tile \(\Gamma := T(N, C) = [0, b] \supseteq T[N, D] \) where \(C = \{0, b, 2b, \ldots, (N-1)b\} \), and define \(\psi_J(x) = \frac{1}{N}(x + (j - 1)b) \), \(j = 1, 2, \ldots, N \). Let \(\Gamma_J = \psi_J(\Gamma) \) for all \(J \in \Sigma_N \). The sequence \(\{\Gamma_J : J \in \Sigma_N^k\}_{k=1}^{\infty} \) forms a nested family of partitions of \([0, b]\). We can select a graph-directed system from these partitions: for \(J \in \Sigma_N^k \), we give a label to \(\Gamma_J \) as

\[
\Delta(J) = \{d_J - c_J : I \in \Sigma_q^k, \phi_I(\Gamma) \cap \psi_J(\Gamma) \neq \emptyset\},
\]

where \(c_J = c_{j_k} + Nc_{j_{k-1}} + \cdots + N^{k-1}c_{j_1} \), if \(J = (j_1, j_2, \ldots, j_k) \in \Sigma_N^k \) and the definition of \(d_I \) is similar. Let \(S_k = \{J \in \Sigma_N^k : \Delta(J) \neq \emptyset\} \), \(S_k^* = \{J \in \Sigma_N^k : \Delta(JJ') \neq \emptyset, \forall J' \in \Sigma_N^k\} \) and \(S_k' = S_k - S_k^* \). It is easy to see that the interval \(\psi_J(\Gamma) \subseteq T \) if and only if \(J \in S_k^* \) and by the construction

\[
T = \bigcap_{k=1}^{\infty} \left(\bigcup_{J \in S_k} \psi_J(\Gamma) \right) \quad \text{and} \quad \partial T = \bigcap_{k=1}^{\infty} \left(\bigcup_{J \in S_k'} \psi_J(\Gamma) \right).
\]

(We remark that it may be necessary to add one or two end points \([0, b]\) to the right side of the second identity above according to the simplicities of 0 and \(b \), which causes trivial changes in the following proofs and no influence at all on the results.)
The crux of this construction is that \(\{\Delta(J) : J \in \Sigma_N^*\} \) is a finite set. This allows us to construct a graph-directed system to reproduce \(T \) and \(\partial T \) in view of (3.1). Here we consider \(\partial T \) only. Let \(\{\Delta(J_i)\}_{i=1}^m \) be all different words in \(S' = \bigcup_{k=1}^{\infty} S'_k \). Then we define the vertices \(V \) as:

\[
V = \{\Delta(0), \Delta(J_1), \ldots, \Delta(J_m)\},
\]

where \(\Delta(0) = \{0\} \) is the “root” (define \(\Delta(J J) = \Delta(J) \)). The corresponding directed edges \(E = \{E_{ij}\}_{i,j=0}^m \) on \(V \) are

\[
E_{ij} = \{c_s \in C : \Delta(J_i s) = \Delta(J_j), 1 \leq s \leq N\},
\]

which come from the partition relationship

\[
\Delta(J_i) \rightarrow \Delta(J_i 1) \Delta(J_i 2) \cdots \Delta(J_i N), \quad i = 0, 1, \ldots, m.
\]

It is clear that, for any vertex \(\Delta(J_j) \), there is a path from the root \(\Delta(0) \) to it. If we let

\[
\phi_{ij}^e = N^{-1}(x + e), \quad e \in E_{i,j}, \quad i, j = 0, 1, \ldots, m,
\]

then according to [HLR, Proposition 3.3], there are nonempty compact subsets \(\{F_0 = \partial T, F_1, \ldots, F_m\} \) satisfying the following graph-directed relationship for \(\partial T \):

\[
(3.2) \quad F_i = \bigcup_{j=0}^m \bigcup_{e \in E_{i,j}} \phi_{ij}^e(F_j) = \bigcup_{j=0}^m N^{-1}(F_j + E_{i,j}), \quad i = 0, 1, \ldots, m.
\]

From (3.2) we can define an \((m+1) \times (m+1)\) matrix \(B \) with the \((i,j)\)th entry given by

\[
b_{ij} = \#E_{i,j}, \quad i, j = 0, 1, \ldots, m
\]

[F] p. 48, where \(B \) is called the adjacency matrix of \(\partial T \). The adjacency matrix is used to count the number of paths of the graph-directed sets in the iteration. Let \(e \) be the \((m+1)\)-vector with all entries equal to 1 and let \(e_i \) be an \((m+1)\)-vector with the \(i \)th entry 1 and zero otherwise. It is not difficult to prove that \(\#S'_n = e_0^t B^n e \) where \(S'_n \) is used in (3.1) [HLR] Proposition 4.1, which satisfies

\[
\lim_{n \to \infty} \left(\frac{\#S'_n}{n}\right)^{1/n} = \lambda_B,
\]

where \(\lambda_B \) is the spectral radius of \(B \). The Hausdorff dimension of \(\partial T \) can be calculated by the following theorem [HLR] Theorem 4.3).

Theorem 3.1. Suppose the self-similar set \(T(N, D) \) has nonempty interior and let \(B \) be the adjacency matrix of \(\partial T \). Then

\[
\dim_H(\partial T) = \frac{\log \lambda_B}{\log N},
\]

where \(\lambda_B \) is the spectral radius of \(B \).

To prove Theorem 1.3 we need the following lemmas.

Lemma 3.2. Suppose that the adjacency matrix \(B \) of \(\partial T \) is irreducible with spectral radius \(\lambda_B = 1 \). Then the cardinalities of all graph-directed sets are equal to one.

Proof. By the Perron-Frobenius Theorem there exists a positive eigenvector \(v \) such that \(v = Bv \). Since \(B \) is irreducible, for each \(j \) there exists an integer \(k \) such that
the \((j,j)\)-entry \(b_{jj}^{(k)}\) of \(B^k\) is positive. Moreover, using \(v = B^k v\), it is easy to get \(b_{ji}^{(k)} = 0\) for \(i \neq j\) and \(b_{jj}^{(k)} = 1\). Hence we have, by iterating (3.2) \(k\) times,

\[N^k F_j = F_j + c_J\]

for some \(J \in \Sigma_N^k\). Consequently \(F_j = \{\sum_{n=1}^{\infty} N^{-kn} c_J = c_J/(N^k-1)\}\) is a singleton. □

Lemma 3.3. Let \(D\) be not a strict product form. Then we can modify all the graph-directed sets in (3.2) such that each of them has no isolated points (may be empty) and keep \(F_0 = \partial T\) invariant.

Proof. From the relation

\[(3.3) \quad F_0 = \bigcup_{j=0}^{m} N^{-1}(F_j + E_{0,j}),\]

we claim that, if \(E_{0,j} \subseteq C\) is nonempty for \(j \neq 0\), then \(F_j\) can be selected so that no isolated points in it can be cancelled without influence on (3.3). Suppose there is an isolated point \(x_0 \in F_j\). If \(x_0 + E_{0,j} \subseteq \bigcup_{k=0, k \neq j} (F_k + E_{0,k})\), then we can omit \(x_0\) from \(F_j\). If the above inclusion is not true, then \(x_0 + c\), for some \(c \in E_{0,j}\), is an isolated point of \(NF_0 = N\partial T\), which is impossible by Theorem 1.2. If \(#F_j\) is finite, that is, all points of it are isolated, then (3.3) holds for each point in \(F_j\), in the case \(F_j\) can be cancelled from the graph-directed relation (3.3) without loss of anything. So the claim follows obviously. Note that in the graph-directed system for the boundary of \(T\) the “root” is \(\partial T = F_0\) and for each \(j\) there is a path from the root \(F_0\) to \(F_j\). Those relations imply that all graph-directed sets can be modified by finite steps with the same method. □

Proof of Theorem 1.3. It is well known that the Hausdorff dimension of the boundary of a self-similar tile is less than one (see e.g. [SW]). Now we make use of Theorem 3.1 to prove that the dimension is positive. Since the adjacency matrix \(B\) can be decomposed as

\[
\begin{bmatrix}
 A_{11} & A_{12} & \cdots & A_{1k} \\
 0 & A_{22} & \cdots & A_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & A_{kk}
\end{bmatrix},
\]

where all \(A_{ii}, i \geq 2\), are irreducible and \(A_{11}\) is either a zero or an irreducible matrix [S], by Lemma 3.3 we can assume that all cardinalities of graph-directed sets in (3.2) are not finite, and then by Lemma 3.2 the spectral radius of \(A_{kk}\) is larger than one, and so is \(\lambda_B\). Hence the result follows by Theorem 3.1. □

Before proving Theorem 1.4, we recall the definition of box dimension for a nonempty bounded subset \(E\) of \(\mathbb{R}^1\). Let \(N_r(E)\) be the smallest number of sets of diameter \(r\) that can cover \(E\). The lower and upper box dimension of \(E\) are defined as

\[
\dim_B E = \liminf_{r \to 0} \frac{\log N_r(E)}{-\log r} \quad \text{and} \quad \overline{\dim}_B E = \limsup_{r \to 0} \frac{\log N_r(E)}{-\log r}
\]
respectively. If they are equal we refer to the common value as the box dimension of E.

Proof of Theorem 1.4. Denote $s = \dim_H \partial T$; then $\lambda_B = N^s$ by Theorem 3.1. For any $t > s$ we have
\[
\left(\sum_{\sigma \in \mathcal{S}_n} |\psi_\sigma(\Gamma)|^t \right)^{1/n} = \left(\#\mathcal{S}_n' N^{-nt} b^t \right)^{1/n}.
\]
Thus
\[
\lim_{n \to \infty} \left(\sum_{\sigma \in \mathcal{S}_n} |\psi_\sigma(\Gamma)|^t \right)^{1/n} = \lambda_B N^{-t} = N^{s-t} < 1.
\]
This limit implies that there exists an integer m such that for $n \geq m$ we have
\[
\sum_{\sigma \in \mathcal{S}_n} |\psi_\sigma(\Gamma)|^t < b^t,
\]
which is equivalent to
\[
\#\mathcal{S}_n' < N^{nt}.
\]
For any r, $0 < r < bN^{-m}$, there is an integer n larger than m satisfying
\[
bN^{-n} \leq r < bN^{-n+1}.
\]
Note that $\{\psi_\sigma(\Gamma)\}_{\sigma \in \mathcal{S}_n'}$ is a bN^{-n}-cover of ∂T. Hence
\[
N_r(\partial T) \leq \#\mathcal{S}_n'.
\]
By the definition of box dimension we have
\[
\dim_B(\partial T) = \limsup_{r \to 0} \frac{N_r(\partial T)}{\log r} \leq \limsup_{n \to \infty} \frac{\log (\#\mathcal{S}_n')}{\log N^{nt}} \leq t.
\]
The result follows by letting t tend to s. \hfill \Box

Acknowledgment

I would like to sincerely thank the anonymous referee for valuable help in improving the presentation of this paper.

References

Department of Mathematics, Central China Normal University, Wuhan, 430079, People’s Republic of China

E-mail address: xingganghe@sina.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use