Distribution of Hecke eigenvalues
HTML articles powered by AMS MathViewer
- by Hirofumi Nagoshi
- Proc. Amer. Math. Soc. 134 (2006), 3097-3106
- DOI: https://doi.org/10.1090/S0002-9939-06-08709-0
- Published electronically: June 5, 2006
- PDF | Request permission
Abstract:
We give two results concerning the distribution of Hecke eigenvalues of $SL(2, \mathbb {Z})$. The first result asserts that on certain average the Sato-Tate conjecture holds. The second result deals with the Gaussian central limit theorem for Hecke eigenvalues.References
- Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1324786
- B. J. Birch, How the number of points of an elliptic curve over a fixed prime field varies, J. London Math. Soc. 43 (1968), 57–60. MR 230682, DOI 10.1112/jlms/s1-43.1.57
- J. B. Conrey, W. Duke, and D. W. Farmer, The distribution of the eigenvalues of Hecke operators, Acta Arith. 78 (1997), no. 4, 405–409. MR 1438595, DOI 10.4064/aa-78-4-405-409
- P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738–742. MR 2374, DOI 10.2307/2371483
- P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361
- Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, Mathematical Surveys and Monographs, vol. 77, American Mathematical Society, Providence, RI, 2000. MR 1746976, DOI 10.1090/surv/077
- Henry H. Kim, Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, DOI 10.1090/S0894-0347-02-00410-1
- Henry H. Kim and Freydoon Shahidi, Functorial products for $\textrm {GL}_2\times \textrm {GL}_3$ and the symmetric cube for $\textrm {GL}_2$, Ann. of Math. (2) 155 (2002), no. 3, 837–893. With an appendix by Colin J. Bushnell and Guy Henniart. MR 1923967, DOI 10.2307/3062134
- V. Kumar Murty, On the Sato-Tate conjecture, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 195–205. MR 685296
- M. Ram Murty and V. Kumar Murty, Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51 (1984), no. 1, 57–76. MR 744288, DOI 10.1215/S0012-7094-84-05104-4
- M. Ram Murty and V. Kumar Murty, An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math. 15 (1984), no. 10, 1090–1101. MR 765015
- M. Ram Murty and V. Kumar Murty, Non-vanishing of $L$-functions and applications, Progress in Mathematics, vol. 157, Birkhäuser Verlag, Basel, 1997. MR 1482805, DOI 10.1007/978-3-0348-0274-1
- Hirofumi Nagoshi, The distribution of eigenvalues of arithmetic infinite graphs, Forum Math. 14 (2002), no. 6, 807–829. MR 1932520, DOI 10.1515/form.2002.035
- Peter Sarnak, Statistical properties of eigenvalues of the Hecke operators, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 321–331. MR 1018385
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- Hiroyuki Yoshida, On an analogue of the Sato conjecture, Invent. Math. 19 (1973), 261–277. MR 337977, DOI 10.1007/BF01425416
Bibliographic Information
- Hirofumi Nagoshi
- Affiliation: Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan
- Email: nagoshih@ybb.ne.jp
- Received by editor(s): March 10, 2003
- Received by editor(s) in revised form: March 26, 2004
- Published electronically: June 5, 2006
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3097-3106
- MSC (2000): Primary 11F30, 11K99
- DOI: https://doi.org/10.1090/S0002-9939-06-08709-0
- MathSciNet review: 2231890