Universal localization of triangular matrix rings
HTML articles powered by AMS MathViewer
- by Desmond Sheiham PDF
- Proc. Amer. Math. Soc. 134 (2006), 3465-3474 Request permission
Abstract:
If $R$ is a triangular $2\times 2$ matrix ring, the columns $P$ and $Q$ are f.g. projective $R$-modules. We describe the universal localization of $R$ which makes invertible an $R$-module morphism $\sigma :P\to Q$, generalizing a theorem of A. Schofield. We also describe the universal localization of $R$-modules.References
- P. Ara, M. A. González-Barroso, K. R. Goodearl, and E. Pardo, Fractional skew monoid rings, J. Algebra 278 (2004), no. 1, 104–126. MR 2068068, DOI 10.1016/j.jalgebra.2004.03.009
- D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
- George M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1–32. MR 357502, DOI 10.1090/S0002-9947-1974-0357502-5
- George M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33–88. MR 357503, DOI 10.1090/S0002-9947-1974-0357503-7
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- P. M. Cohn. Localization in general rings, a historical survey. Proceedings of the Conference on Noncommutative Localization in Algebra and Topology, ICMS, Edinburgh, 29-30 April, 2002, London Mathematical Society Lecture Notes 330, Cambridge University Press, 5–23, 2006.
- P. M. Cohn, Free rings and their relations, London Mathematical Society Monographs, No. 2, Academic Press, London-New York, 1971. MR 0371938
- P. M. Cohn, Rings of fractions, Amer. Math. Monthly 78 (1971), 596–615. MR 285561, DOI 10.2307/2316568
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- P. M. Cohn and Warren Dicks, Localization in semifirs. II, J. London Math. Soc. (2) 13 (1976), no. 3, 411–418. MR 424856, DOI 10.1112/jlms/s2-13.3.411
- Warren Dicks and Eduardo D. Sontag, Sylvester domains, J. Pure Appl. Algebra 13 (1978), no. 3, 243–275. MR 509164, DOI 10.1016/0022-4049(78)90011-7
- M. Farber and P. Vogel, The Cohn localization of the free group ring, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 433–443. MR 1151322, DOI 10.1017/S0305004100075538
- A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27 (1999), no. 11, 5507–5525. MR 1713049, DOI 10.1080/00927879908826770
- A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147 (2000), no. 1, 41–58. MR 1744654, DOI 10.1016/S0022-4049(98)00129-7
- T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294, DOI 10.1007/978-1-4612-0525-8
- A. A. Ranicki. Noncommutative localization in topology. Proceedings of the Conference on Noncommutative Localization in Algebra and Topology, ICMS, Edinburgh, 29-30 April, 2002. arXiv:math.AT/0303046, London Mathematical Society Lecture Notes 330, Cambridge University Press, 81–102, 2006.
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
Additional Information
- Desmond Sheiham
- Affiliation: Department of Mathematics, International University Bremen, Bremen 28759, Germany
- Received by editor(s): October 22, 2004
- Received by editor(s) in revised form: May 31, 2005, and July 7, 2005
- Published electronically: June 12, 2006
- Additional Notes: Desmond Sheiham died on March 25, 2005. This article was prepared for publication by Andrew Ranicki, with the assistance of Aidan Schofield.
- Communicated by: Martin Lorenz
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 134 (2006), 3465-3474
- MSC (2000): Primary 13B30
- DOI: https://doi.org/10.1090/S0002-9939-06-08420-6
- MathSciNet review: 2240657