ON SUBMULTIPLICATIVITY OF SPECTRAL RADIUS
AND TRANSITIVITY OF SEMIGROUPS

HEYDAR RADJAVI AND PETER ROSENTHAL

(Communicated by Joseph A. Ball)

Abstract. It is shown that a transitive, closed, homogeneous semigroup of
linear transformations on a finite-dimensional space either has zero divisors or
is simultaneously similar to a group consisting of scalar multiples of unitary
transformations. The proof begins with the result that for each closed homo-
geneous semigroup with no zero divisors there is a k such that the spectral
radius satisfies $r(AB) \leq kr(A)r(B)$ for all A and B in the semigroup.

It is also shown that the spectral radius is not k-submultiplicative on any
transitive semigroup of compact operators.

1. Introduction

We consider semigroups of linear transformations or operators, by which we
simply mean collections closed under multiplication. A semigroup S is said to be
transitive if $\{Ax : A \in S\}$ is dense in the space for every non-zero vector x (this
is sometimes called ‘topological transitivity’, to distinguish it from the case where
$\{Ax : A \in S\}$ is the entire space for each $x \neq 0$). A semigroup is said to be irreducible
if it has no non-trivial invariant subspaces; a transitive semigroup is irreducible (but an irreducible semigroup need not be transitive).

The spectral radius r is said to be k-submultiplicative on a semigroup if $r(AB) \leq
kr(A)r(B)$ for all A and B in the semigroup. This paper was partially stimulated
by [2], which contains results relating k-submultiplicativity of spectral radius to
$\frac{1}{k}$-supermultiplicativity (i.e., $r(AB) \geq \frac{1}{k}r(A)r(B)$).

We begin with several results on finite-dimensional spaces and then establish a
theorem for semigroups of compact operators.

2. Semigroups of linear transformations on finite-dimensional spaces

In this section we restrict our attention to linear operators on finite-dimensional
complex vector spaces.

Definition 2.1. A semigroup of linear transformations is said to be homogeneous
if it is closed under multiplication by complex scalars. By a closed semigroup we
mean one that is closed in the norm topology.
Theorem 2.2. If a closed, homogeneous semigroup has no (non-zero) zero divisors, then there exists a $k \geq 1$ such that
\[
\frac{1}{k} r(A)r(B) \leq r(AB) \leq kr(A)r(B)
\]
for all A and B in the semigroup.

Proof. Suppose there is no k satisfying $r(AB) \leq kr(A)r(B)$ for all A and B. For each n, choose a pair $\{A_n, B_n\}$ in the semigroup such that
\[
r(A_nB_n) > nr(A_n)r(B_n).
\]
Dividing by $r(A_n)r(B_n)$ yields operators C_n and D_n with
\[
r(C_nD_n) > n.
\]
Thus, at least one of the sequences $\{\|C_n\|\}$ and $\{\|D_n\|\}$ is unbounded. Assume, after replacing sequences by subsequences, that
\[
\|C_n\| \to \infty \quad \text{and} \quad \frac{C_n}{\|C_n\|} \to R.
\]
Now, $R \neq 0$ (because $\|R\| = 1$) and, by continuity of the spectral radius, $r(R) = 0$. Hence R is nilpotent, so the semigroup has zero divisors, which is a contradiction. Thus there is a k such that
\[
r(AB) \leq kr(A)r(B)
\]
for all A and B in the semigroup. Since the semigroup contains members A with spectral radius one, and since $r(A^2) = r(A)^2$, it follows that $k \geq 1$. The fact that
\[
r(AB) \geq \frac{1}{k} r(A)r(B)
\]
then follows from Theorem 2 of [2].

Theorem 2.3. A transitive, homogeneous, closed semigroup that has no zero divisors is simultaneously similar to a group consisting of scalar multiples of unitary transformations.

Proof. Let \mathcal{S} be such a semigroup.

By Lemma 3.1.6 of [3], since the semigroup is irreducible, there is an idempotent E of minimal non-zero rank in \mathcal{S} such that the restriction of $ESE \setminus \{0\}$ to the range of E is simultaneously similar to a group of multiples of unitaries. If E is the identity operator, there is nothing more to prove. Suppose otherwise; it must then be shown that \mathcal{S} contains zero divisors.

Perform a similarity so that the restriction of ESE to the range of E consists of multiples of unitaries. Decompose members of \mathcal{S} as block matrices with respect to the ranges of E and $I - E$; each $(1,1)$ entry in this block decomposition is a multiple of a unitary operator.

Suppose there are no zero divisors in \mathcal{S}. By Theorem 2.2 above, there is then a k such that
\[
r(AB) \leq kr(A)r(B)
\]
for all A and B in \mathcal{S}. We will show that the transitivity of \mathcal{S} implies there is no such k.

Since \mathcal{S} is transitive, there is a T other than 0 in \mathcal{S} whose $(1,2)$ block entry T_{12} is not zero. Then T's $(1,1)$ block T_{11} is also different from zero, since otherwise ET
would be a non-trivial nilpotent member of \mathcal{S}. Multiply T by an appropriate scalar so that T_{11} is unitary, and call the resulting operator R. The operator ER has the block form

$$
\begin{pmatrix}
R_{11} & R_{12} \\
0 & 0
\end{pmatrix}
$$

with R_{11} unitary and $R_{12} \neq 0$. Choose a vector g in the range of $I - E$ such that $R_{12}g \neq 0$.

Let s and t be positive numbers, to be specified later. Fix any unit vector f in the range of E. By the transitivity of \mathcal{S}, we can find S in \mathcal{S} so that Sf is within t of sf. Then $\|S_{11}f\| < t$ and $\|S_{21}f - sg\| < t$.

Since f is a unit vector and S_{11} is a multiple of a unitary operator, it follows that $\|S_{11}\| < t$.

Let $A = SE$ and $B = ER$. Then $r(A) = r(S_{11}) < t$ and $r(B) = r(U_{11}) = 1$. Also,

$$
BA = ERSE = \begin{pmatrix}
R_{11}S_{11} + R_{12}S_{21} & 0 \\
0 & 0
\end{pmatrix}.
$$

Hence,

$$
BAf = (R_{11}S_{11} + R_{12}S_{21})f.
$$

By choosing t sufficiently small, BAf can be made as close to $sR_{12}g$ as desired (by the above inequalities). Thus the norm of BA may be made arbitrarily large by choosing s sufficiently large.

This leads to a contradiction, as follows: By the above, $r(A) < t$ and $r(B) = 1$. Note that $r(BA) = \|BA\|$, since the $(1,1)$ block of BA is a multiple of a unitary operator and the other entries are 0. Thus choosing s sufficiently large yields $r(BA) > kr(B)r(A)$.

Theorem 2.4. If \mathcal{S} is a transitive semigroup of linear transformations on which the spectral radius is k-submultiplicative for some k, then there is an invertible transformation A such that $\{A^{-1}SA : S \in \mathcal{S}\}$ consists of multiples of unitary transformations.

Proof. Let \mathcal{J} be the closure of $\mathbb{C}\mathcal{S}$. Note that continuity of the spectral radius implies that \mathcal{J} also satisfies the hypothesis. Assume that the spectral radius is not multiplicative. Then Theorem 2.3 together with this assumption implies that there are non-zero A and B in \mathcal{S} with $AB = 0$. Thus the set BSA consists of operators X with $X^2 = 0$. Since $BSA \neq \{0\}$ (by the irreducibility of \mathcal{S}), the set N of nilpotent members of \mathcal{S} is different from $\{0\}$. Now the k-submultiplicativity of spectral radius on \mathcal{S} implies that N is a semigroup ideal of \mathcal{S}. Since N is triangularizable by Levitzki’s Theorem ([1], Theorem 2.1.7 of [3]), and since every non-trivial ideal of an irreducible semigroup is irreducible (see Lemma 2.1.10 of [3]), this is the desired contradiction.

Corollary 2.5. If the spectral radius is k-submultiplicative on a transitive semigroup of linear transformations, then the spectral radius is multiplicative on the semigroup.

Proof. This follows immediately from Theorem 2.4.
As shown in [2], for a closed homogeneous semigroup \(S \) with no zero divisors and a number \(k \geq 1 \), the following statements are equivalent:

1. \(r(AB) \leq kr(A)r(B) \) for all \(A \) and \(B \) in \(S \),
2. \(r(AB) \geq \frac{1}{k}r(A)r(B) \) for all \(A \) and \(B \) in \(S \).

The following result shows that for every \(k \), there is a semigroup ‘sharply’ satisfying (1) and (2). (An example with \(k = 4 \) is contained in [2].)

Proposition 2.6. Let \(m \geq 1 \) be given. There is an irreducible semigroup \(S \) with no zero divisors that satisfies (1) and (2) above for \(k = m \) but does not satisfy those inequalities for any \(k < m \).

Proof. For a non-zero column vector

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\]

and a positive number \(v \),

we say that \(x \) is of variation \(v \) if \(\frac{x_i}{x_j} \leq v \) for all \(i \) and \(j \). (Note that this implies \(v \geq 1 \) and \(x_i \neq 0 \) for all \(i \).)

Let \(\chi_v \) be the set of all column vectors of variation \(v \). It is easily seen that \(\chi_v \) is a closed set in \(\mathbb{C}^n \) and \(\alpha x \in \chi_v \) if \(x \in \chi_v \) and \(0 \neq \alpha \in \mathbb{C} \). Now define \(S_v \) to be the set of all matrices with exactly one column from \(\chi_v \) whose other columns are all zero.

Each member of \(S_v \) is of the form \(xe_i^* \), where \(x \in \chi_v \) and where \(\{e_j\} \) are the basis unit columns (with the \(j \)-th component of \(e_j \) equal to 1). If \(x \) and \(y \) are members of \(\chi_v \) and \(i, j \) are integers in \([1, n]\), then

\[
(xe_i^*)(ye_j^*) = (e_i^*y)xe_j^*.
\]

This shows that \(S_v \) is a semigroup. Since

\[
r(xe_i^*) = |x_i| = |e_i^*x|,
\]

where \(x_i \) is the \(i \)-th component of \(x \), we have

\[
r((xe_i^*)(ye_j^*)) = |e_i^*y| \cdot |x_j| = |y_i| \cdot |x_j|
\]

\[
= \left| \frac{y_j}{y_i} \right| \cdot \left| \frac{x_j}{x_i} \right| \cdot |x_i| \cdot |y_j|
\]

\[
\leq v^2 r(xe_i^*)r(ye_j^*),
\]

which shows that \(S \) satisfies (1) above with \(k = v^2 \). Thus (2) is also satisfied since \(S \) contains no zero divisors. It is easy to see that no \(k < v^2 \) would do: just consider

\[
A = \begin{pmatrix}
 1 & 0 & 0 & \ldots & 0 \\
 v & 0 & 0 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & 0 & 0 & \ldots & 0
\end{pmatrix}
\]

and \(B = \begin{pmatrix}
 0 & v & 0 & \ldots & 0 \\
 0 & 1 & 0 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 1 & 0 & \ldots & 0
\end{pmatrix}.\]

Then \(r(A) = r(B) = 1 \), and \(r(AB) = v^2 \). \(\square \)
3. Semigroups of compact operators

One of the above theorems can be extended to semigroups of compact operators on Hilbert spaces.

Theorem 3.1. If S is a transitive semigroup of bounded linear operators on a Hilbert space, and if S contains a compact operator other than 0, then the spectral radius is not k-submultiplicative on S for any k.

Proof. Suppose there is a k such that
\[
r(AB) \leq kr(A)r(B)
\]
for all A and B in S. Since a non-zero semigroup ideal of a transitive semigroup is transitive, we can and do assume that S consists of compact operators. Turovski’s Theorem ([4], [3], Theorem 8.1.11) states that a semigroup of quasinilpotent compact operators has a non-trivial invariant subspace, so S must contain operators that are not quasinilpotent.

Enlarge S by including all scalar multiples of the members of S and then taking the uniform closure; let J be the enlarged semigroup. Since spectral radius is continuous on the collection of compact operators,
\[
r(AB) \leq kr(A)r(B)
\]
for $A, B \in J$. By Corollary 8.1.12 of [3], J contains finite-rank operators other than 0, and Lemma 8.1.15 of [3] yields a finite-rank idempotent E in J of minimal non-zero rank.

It follows from the finite-dimensional case that the restriction of $JE \backslash \{0\}$ to the range of E is simultaneously similar to a subgroup of multiples of unitary operators.

Now the proof proceeds along the lines of the last part of the proof of Theorem 2.3 above. Since E is of finite rank, and thus is not the identity operator, the transitivity of J contradicts the k-submultiplicativity of the spectral radius.

\[\square\]

Corollary 3.2. If S is a semigroup of bounded linear operators on a Hilbert space that contains a compact operator other than 0, and if the spectral radius is k-submultiplicative on S for some k, then there is a closed subset of the Hilbert space that is invariant under all the operators in S and is different from $\{0\}$ and the entire space.

Proof. If S did not have such a proper, closed, invariant set, then S would be transitive, contradicting the previous theorem.

\[\square\]

Proposition 3.3. Let $k \geq 1$. There is an irreducible semigroup of finite-rank operators on l^2 which has no zero divisors and satisfies
\[
\frac{1}{k}r(A)r(B) \leq r(AB) \leq kr(A)r(B)
\]
for all A and B in the semigroup.

Proof. The example S_v of Proposition 2.3 with $v = \sqrt{k}$ does not occur in infinite dimensions, since l^2 contains no vectors of any fixed variation. There are known semigroups of finite-rank operators, with no zero divisors on l^2, with multiplicative spectral radius. Let J be such a semigroup (e.g. see Example 8.6.6 of [3]). Let S_v
be the example of Proposition 2.6 with \(v = \sqrt{k} \) on a space of dimension 2. Now let \(S = S_v \otimes J \) (on \(l^2 \otimes l^2 \), identified with \(l^2 \)).

The irreducibility of \(S \) and its lack of zero divisors follow from the same properties of \(S_v \) and \(J \). All that is left to prove is that if \(S_i, i = 1, 2 \) are semigroups satisfying

\[
\frac{1}{k_1} r(A) r(B) \leq r(AB) \leq k_1 r(A) r(B)
\]

for all \(A \) and \(B \) in \(S_i, i = 1, 2 \), then the members of \(S_1 \otimes S_2 \) satisfy

\[
\frac{1}{k_1 k_2} r(A) r(B) \leq r(AB) \leq k_1 k_2 r(A) r(B).
\]

But since \(r(S \otimes T) = r(S)r(T) \) for all \(S \) and \(T \), we have, for \(A_1, B_1 \) in \(S_1 \) and \(A_2, B_2 \) in \(S_2 \), that

\[
r((A_1 \otimes A_2)(B_1 \otimes B_2)) = r(A_1 B_1 \otimes A_2 B_2) = r(A_1 B_1) \cdot r(A_2 B_2)
\]

\[
\leq k_1 k_2 r(A_1) r(B_1) \cdot r(A_2) r(B_2)
\]

\[
= k_1 k_2 r(A_1) r(B_1) r(A_2) r(B_2)
\]

\[
= k_1 k_2 r(A_1 \otimes A_2) \cdot r(B_1 \otimes B_2).
\]

The inequality involving \(\frac{1}{k_1 k_2} \) can be similarly established. \(\square \)

References

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
E-mail address: hradjavi@cpu105.math.uwaterloo.ca

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
E-mail address: rosent@math.toronto.edu