DENSELY ALGEBRAIC BOUNDS FOR THE EXPONENTIAL FUNCTION

SEON-HONG KIM

(Communicated by Wen-Ching Winnie Li)

Abstract. An upper bound for e^x that implies the inequality between the arithmetic and geometric means is generalized with the introduction of a new parameter n. The new upper bound is smoothly and densely algebraic in n, and valid for $-b < x < 1$ for arbitrarily large positive b provided that $n (> 1)$ is sufficiently close to 1. The range of its validity for negative x is investigated through the study of a certain family of quadrinomials.

1. Introduction

In §4.2 of the classical treatise [1] the inequality between the arithmetic and geometric means is deduced from

$$1 + x \leq e^x.$$

This is the proof of “Pólya’s dream” [5]. With a change of variable this can be rewritten as

$$e^x \leq \frac{1}{1 - x}$$

for $x < 1$. In this paper, we shall establish the following generalization of which (1.1) is the case $n = 1$. For convenience, we let

$$U(n, x) = 1 - \frac{1}{n} + \frac{1}{n} \left(\frac{1 + \left(\frac{1}{n} \right) x}{1 - \frac{x}{n}} \right)^n.$$

Theorem 1.1. For real $n \geq 1$ and

$$-\frac{n}{n - 1} < x < n,$$

we have

$$e^x \leq U(n, x)$$

with equality if and only if $x = 0$. Moreover, for $0 \leq x < 1$ and $1 \leq n \leq 2$ we have

$$e^x \leq U(n, x) \leq \frac{1}{1 - x},$$

Received by the editors January 15, 2005 and, in revised form, July 5, 2005 and August 5, 2005.

2000 Mathematics Subject Classification. Primary 33B10; Secondary 11A99.

Key words and phrases. Algebraic bounds, exponential function, polynomials.

This study was supported (in part) by research funds from Chosun University, 2004.

©2006 American Mathematical Society
and for $x < 0$ and $0 < n \leq 1$ we have

$$e^x \leq \frac{1}{1-x} \leq U(n, x).$$

Here $U(n, x)$ is smoothly and densely algebraic in n in the sense that it is an algebraic function of x whenever n is rational and this algebraic function changes by arbitrarily small amounts on compact sets for sufficiently small rational changes in n.

Another upper bound for e^x that generalizes (1.1) is Karamata’s [2]

$$e^x \leq \sum_{k=0}^{n-1} \frac{x^k}{k!} + \frac{x^n}{n!} \frac{n}{n-x}$$

provided n is a positive integer and $0 \leq x < n$. This is tighter for $0 < x < n$ but often fails for $x < 0$. Also, since $n-1$ is the upper limit of the summation here, it is not smoothly algebraic in n. Another tighter bound for e^x is Sewell’s [4]

$$e^x \leq \left(1 + \frac{x}{n}\right)^{n+(x/2)}$$

for n a positive integer and $x \geq 0$. This is not algebraic in x, and can fail for $x < 0$.

The change of variable given by replacing x with

$$\frac{n(x-1)}{n+x-1}$$

plays an important role here. In fact, it is immediate that the first part of Theorem 1.1 is equivalent to

Theorem 1.2. For real $n \geq 1$ and $x > 0$ we have

$$(1.2) \quad \exp\left(\frac{n(x-1)}{n+x-1}\right) \leq \frac{n-1+x^n}{n}$$

with equality if and only if $x = 1$.

Our proof for Theorem 1.2 will be in the spirit of §2.15 of [1] where some “fundamental inequalities” that also lead to the inequality between the arithmetic and geometric means, including

$$x^r - 1 > r(x-1), \quad r > 1, \quad x > 0, \quad x \neq 1,$$

are proved for all real $r > 1$ by first establishing them for rational numbers and then taking limits. Also the proof of Theorem 1.2 will rely on the polynomial

$$K(p, q, x) := q^2(x^{p+q} - x^p) + q(p-q)(x^p - x^{p-q}) + p(p-q)(x^{p-q} - 1),$$

where both p and q are integers and $p > q$. For our convenience, we write $K(x) = K(p, q, x)$.

For a survey of rational bounds for e^x see pp. 266-270 of [3]. The examination of the inequalities between $(1-x)^{-1}$ and $U(n, x)$ from the point of view of their power series expansions leads to questions about a certain sequence of polynomials; see §3. We remark here that for $0 \leq x < 1$ the power series of $U(n, x) - (1-x)^{-1}$ about $x = 0$ is

$$\frac{(n-1)(n-2)}{2n} x^2 + \frac{1}{6} \left(2 + \frac{6}{n^2} - \frac{6}{n} - 3n + n^2\right) x^3 + \cdots.$$
So for $n > 2$ and small $x > 0$ we have $U(n, x) > (1 - x)^{-1}$. For $0 \leq x < 1$ and n large some simple asymptotics (details omitted) show that $(1 - x)^{-1} < U(n, x)$ for $x \leq 1 - e^n$ for a fixed $c > 1/2$, while $U(n, x) < (1 - x)^{-1}$ for $x \geq 1 - e^n$ for a fixed $c \leq 1/2$.

2. Proofs

We begin with a lemma that leads to the inequalities between $(1 - x)^{-1}$ and $U(n, x)$, and then proceed to the inequalities between e^x and $U(n, x)$. This latter inequality is of course immediate when $x < 1$ and $(1 - x)^{-1} \leq U(n, x)$.

Lemma 2.1. (a) Let $c = 1 - 1/n$, where $1 \leq n \leq 2$ and $0 \leq x < 1$. Then

$$l_1 := \frac{nc}{1 + cx} + \frac{1}{1 - \frac{x}{n}} \leq \frac{nc}{1 + ncx} + \frac{1}{1 - x} =: r_1.$$

(b) Let $0 < a \leq b$, $1 \leq b$, and $x \geq 0$. Then

$$l_2 := \frac{a}{1 + \frac{a}{b}x} + \frac{b}{1 + bx} \leq \frac{a}{1 + ax} + \frac{b}{1 + x} =: r_2.$$

Proof. For (a) we have

$$r_1 - l_1 = \frac{(n-1)(1 + cn)x(2 - n + cx(1 + n))}{(x - 1)(x - n)(1 + cx)(1 + cnx)} \geq 0,$$

while for (b) we have

$$r_2 - l_2 = \frac{(b-1)(b-a)x(a + b + a(1+b)x)}{(1 + x)(1 + ax)(b + ax)(bx + 1)} \geq 0.$$

\square

We now proceed to the right side of the second part of Theorem 1.1. Observe that

$$n \log (1 + cx) - n \log \left(1 - \frac{x}{n}\right) \leq \log (1 + ncx) - \log (1 - x)$$

since there is equality when $x = 0$, and the corresponding inequality between the derivatives of each side follows from (a) of Lemma 2.1. Hence

$$\left(\frac{1 + cx}{1 - \frac{x}{n}}\right)^n \leq \frac{1 + ncx}{1 - x}$$

and we obtain $U(n, x) \leq 1/(1 - x)$. For the right side of the third part of Theorem 1.1 a similar argument using (b) of Lemma 2.1 yields

$$\left(\frac{1 + \frac{a}{b}x}{1 + x}\right)^b \leq \frac{1 + ax}{1 + bx}.$$

Here we may take $b = \frac{1}{n}$ and $a = \frac{1}{n} - 1$ for $0 < n \leq 1$, so

$$\frac{1 - (n - 1)x}{1 + x} \leq \left(\frac{1 - (1 - \frac{1}{n})x}{1 + \frac{x}{n}}\right)^n.$$

Upon replacing x by $-x$ (so that $x \leq 0$), we obtain

$$\frac{1}{1 - x} \leq U(n, x).$$
For the proof of Theorem 1.2 (and hence of the remaining first part of Theorem 1.1) we observe that (1.2) is equivalent to

\[(2.1) \quad g(x) := \frac{n(x-1)}{n + x - 1} \leq \log \left(\frac{n - 1 + x^n}{n} \right) =: f(x). \]

Since both sides of (2.1) are zero when \(x = 1\) we may apply the following lemma (proof omitted) to reduce it to an inequality not involving transcendental functions.

Lemma 2.2. Let \(f(x)\) and \(g(x)\) be differentiable functions on a finite or infinite interval \(I\) containing 1 such that \(f(1) = g(1)\), and such that \(g'(x) \geq f'(x)\) for \(x < 1\) and \(g'(x) \leq f'(x)\) for \(x > 1\). Then \(g(x) \leq f(x)\).

Now

\[g'(x) = \frac{n^2}{(n - 1 + x)^2} \quad \text{and} \quad f'(x) = \frac{n x^{n-1}}{n - 1 + x}. \]

Replace \(n\) by \(p/q\) where both \(p\) and \(q\) are positive integers, \(p > q\). The change of variable \(x\) by \(x^s\) takes 1 to 1 and \((0, \infty)\) to \((0, \infty)\). To verify the hypothesis of Lemma 2.2 we need to show that \(H(x)\) has the same sign as \(x - 1\), where

\[H(x) := H(p, q, x) := f'(x) - g'(x) = \frac{p x^{b-q}}{p + q(x^p - 1)} - \frac{p^2}{(p + q(x^p - 1))^2} = \frac{p K(x)}{(p - q + qx^b)(p - q + qx^q)^2} \]

and

\[K(x) = q^2(x^{b+q} - x^p) + q(p - q)(x^p - x^{b-q}) + p(p - q)(x^{p-q} - 1). \]

Using the identity

\[(2.2) \quad x^s - x^t = \left(\frac{x^s - 1}{x - 1} - \frac{x^t - 1}{x - 1} \right) (x - 1) \]

for \(s \geq t \geq 0\) and the expansion of the terms in (2.2) into geometric series, we see that \(K(x)\) is the product of \(x - 1\) with polynomials in \(x\), all of whose coefficients are nonnegative. Hence \(K(x)\) has the same sign as \(x - 1\). The inequality of the theorem for rational \(n\) now follows from Lemma 2.2. For real \(n \geq 1\), it follows by letting \(p/q \to n\) where \(p\) and \(q\) run through sequences of integers such that \(p > q \geq 1\). The strict inequality for \(x \neq 1\) follows from the fact that the functions in \(x\)

\[\exp \left(\frac{n(x - 1)}{n + x - 1} \right) \quad \text{and} \quad \frac{n - 1 + x^n}{n} \]

are strictly increasing for \(x > 0\).

3. A Sequence of Polynomials

It is possible that the \(U(n, x) \leq (1 - x)^{-1}\) inequality for \(1 \leq n \leq 2\) can be strengthened to an inequality between the corresponding power series coefficients. In fact, we can make a stronger conjecture. Write

\[\frac{1}{n - 1} (U(n, x) - (1 - x)^{-1}) = \sum_{k=2}^{\infty} P_k(n)x^k. \]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Here \(P_2(n) = n - 2 \), \(P_3(n) = n^3 - 2n^2 - 6 \) and
\[P_4(n) = n^5 - 5n^4 + 18n^3 - 48n^2 + 12n - 24. \]
The unique real zeros of \(P_2 \), \(P_3 \) and \(P_4 \) are
\(n = 2 \), \(n = 2.7776 \cdots \) and \(n = 3.5934 \cdots \), respectively. We conjecture that each \(P_k(n) \) for \(k \geq 4 \) is a monic polynomial of degree \(2k-3 \) whose coefficients alternate in sign, and has a unique real root \(r_k \) that exceeds the real part of every other root of \(P_k(n) \). Moreover,
\[0 < r_{k+1} - r_k < 1 \quad \text{and} \quad \lim_{k \to \infty} (r_{k+1} - r_k) = 1. \]
It also seems that \(k! \) divides \(P_k(2) \).

To describe qualitatively the conjectural zero distribution of \(P_k(n) \) we employ polar coordinates \(r \) and \(\phi \) to describe a certain curve \(\theta \). It is the cardioid \(H \) given by \(r = 1 + \cos \phi \) together with that part of the circle \(C \) defined by \(r = 1/4 \) that lies outside of \(H \). The left vertical tangent to \(C \), call it \(T \), is tangent to the cardioid at two points, and (much more crudely) the \(\theta \)-curve is topologically equivalent to the Greek letter \(\theta \). Note that the cusp of \(H \) is inside of the circle \(C \). The conjecture is that the zeros of \(P_k(n) \) for \(k \) large lie on or very close to a curve similar (in the non-technical sense) to \(\theta \) that has the imaginary axis as a line of triple tangency analogous to \(T \). Also, about \(1/3 \) of the zeros lie on or inside the part of the \(\theta \)-curve that corresponds to the union of its \(C \) part with that part of \(H \) that lies inside of the full circle \(C \).

ACKNOWLEDGMENT

The author expresses his thanks to Prof. Kenneth B. Stolarsky of the University of Illinois at Urbana-Champaign, USA, for helpful conversations. The author is grateful to the referee of this paper for useful comments and suggestions that led to further development of an earlier version.

REFERENCES

Department of Mathematics, College of Natural Science, Chosun University, 375 Susuk-dong, Dong-gu, Gwangju, 501-759 Korea
E-mail address: sshkim17@mail.chosun.ac.kr