Baire spaces and Vietoris hyperspaces
HTML articles powered by AMS MathViewer
- by Jiling Cao, Salvador García-Ferreira and Valentin Gutev PDF
- Proc. Amer. Math. Soc. 135 (2007), 299-303 Request permission
Erratum: Proc. Amer. Math. Soc. 136 (2008), 3729-3731.
Abstract:
We prove that if the Vietoris hyperspace $CL(X)$ of all nonempty closed subsets of a space $X$ is Baire, then all finite powers of $X$ must be Baire spaces. In particular, there exists a metrizable Baire space $X$ whose Vietoris hyperspace $CL(X)$ is not Baire. This settles an open problem of R. A. McCoy stated in 1975.References
- J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48. MR 380745
- Ahmed Bouziad, Ľubica Holá, and László Zsilinszky, On hereditary Baireness of the Vietoris topology, Topology Appl. 115 (2001), no. 3, 247–258. MR 1848126, DOI 10.1016/S0166-8641(00)00077-8
- Jiling Cao and David Gauld, Volterra spaces revisited, J. Aust. Math. Soc. 79 (2005), no. 1, 61–76. MR 2161175, DOI 10.1017/S1446788700009332
- Paul E. Cohen, Products of Baire spaces, Proc. Amer. Math. Soc. 55 (1976), no. 1, 119–124. MR 401480, DOI 10.1090/S0002-9939-1976-0401480-4
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125. MR 88674
- W. G. Fleissner and K. Kunen, Barely Baire spaces, Fund. Math. 101 (1978), no. 3, 229–240. MR 521125, DOI 10.4064/fm-101-3-229-240
- D. B. Gauld and Z. Piotrowski, On Volterra spaces, Far East J. Math. Sci. 1 (1993), no. 2, 209–214. MR 1259877
- Gary Gruenhage and David Lutzer, Baire and Volterra spaces, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3115–3124. MR 1664398, DOI 10.1090/S0002-9939-00-05346-6
- R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 73. MR 431104
- Robert A. McCoy, Baire spaces and hyperspaces, Pacific J. Math. 58 (1975), no. 1, 133–142. MR 410689
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Dominikus Noll, On the preservation of Baire category under preimages, Proc. Amer. Math. Soc. 107 (1989), no. 3, 847–854. MR 982407, DOI 10.1090/S0002-9939-1989-0982407-2
- John C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157–166. MR 140638, DOI 10.4064/fm-49-2-157-166
- Tudor Zamfirescu, Most convex mirrors are magic, Topology 21 (1982), no. 1, 65–69. MR 630880, DOI 10.1016/0040-9383(82)90041-6
- Tudor Zamfirescu, Nearly all convex bodies are smooth and strictly convex, Monatsh. Math. 103 (1987), no. 1, 57–62. MR 875352, DOI 10.1007/BF01302711
- László Zsilinszky, Baire spaces and hyperspace topologies, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2575–2584. MR 1343733, DOI 10.1090/S0002-9939-96-03528-9
Additional Information
- Jiling Cao
- Affiliation: Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1, New Zealand
- Address at time of publication: School of Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1020, New Zealand
- Email: jiling.cao@aut.ac.nz
- Salvador García-Ferreira
- Affiliation: Instituto de Matematicas (UNAM), Apartado Postal 61-3, Xangari 58089, Morelia, Michoacan, Mexico
- Email: sgarcia@matmor.unam.mx
- Valentin Gutev
- Affiliation: School of Mathematical Sciences, Faculty of Science, University of KwaZulu-Natal, King George V Avenue, Durban 4041, South Africa
- Email: gutev@ukzn.ac.za
- Received by editor(s): September 2, 2004
- Published electronically: August 16, 2006
- Additional Notes: The first author’s research was supported by the Foundation for Research, Science and Technology of New Zealand under project number UOAX0240.
The third author’s research was partially supported by the National Research Foundation of South Africa under grant number 2053735. - Communicated by: Jonathan M. Borwein
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 299-303
- MSC (2000): Primary 54E52; Secondary 26A21, 46A30, 54B10, 54B20
- DOI: https://doi.org/10.1090/S0002-9939-06-08743-0
- MathSciNet review: 2280197