Regularity of solutions to stochastic Volterra equations with infinite delay
HTML articles powered by AMS MathViewer
- by Anna Karczewska and Carlos Lizama
- Proc. Amer. Math. Soc. 135 (2007), 531-540
- DOI: https://doi.org/10.1090/S0002-9939-06-08487-5
- Published electronically: August 2, 2006
- PDF | Request permission
Abstract:
In this article we give necessary and sufficient conditions providing regularity of solutions to stochastic Volterra equations with infinite delay on a $d$-dimensional torus. The harmonic analysis techniques and stochastic integration in function spaces are used. The work applies to both the stochastic heat and wave equations.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Philippe Clément and Giuseppe Da Prato, Some results on stochastic convolutions arising in Volterra equations perturbed by noise, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7 (1996), no. 3, 147–153 (English, with English and Italian summaries). MR 1454409
- Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Integral Equations Operator Theory 11 (1988), no. 4, 480–500. MR 950513, DOI 10.1007/BF01199303
- Robert C. Dalang and N. E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab. 26 (1998), no. 1, 187–212. MR 1617046, DOI 10.1214/aop/1022855416
- C. Gasquet and P. Witomski, Fourier analysis and applications, Texts in Applied Mathematics, vol. 30, Springer-Verlag, New York, 1999. Filtering, numerical computation, wavelets; Translated from the French and with a preface by R. Ryan. MR 1657104, DOI 10.1007/978-1-4612-1598-1
- I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Revision, Academic Press, San Diego, New York, London, Tokyo, 1980.
- G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319, DOI 10.1017/CBO9780511662805
- Anna Karczewska and Jerzy Zabczyk, A note on stochastic wave equations, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 501–511. MR 1818028
- Anna Karczewska and Jerzy Zabczyk, Stochastic PDE’s with function-valued solutions, Infinite dimensional stochastic analysis (Amsterdam, 1999) Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 197–216. MR 1832378
- Anna Karczewska and Jerzy Zabczyk, Regularity of solutions to stochastic Volterra equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000), no. 3, 141–154 (2001) (English, with English and Italian summaries). MR 1841688
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- Annie Millet and Marta Sanz-Solé, A stochastic wave equation in two space dimension: smoothness of the law, Ann. Probab. 27 (1999), no. 2, 803–844. MR 1698971, DOI 10.1214/aop/1022677387
- Carl Mueller, Long time existence for the wave equation with a noise term, Ann. Probab. 25 (1997), no. 1, 133–151. MR 1428503, DOI 10.1214/aop/1024404282
- Jace W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29 (1971), 187–204. MR 295683, DOI 10.1090/S0033-569X-1971-0295683-6
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- M. Reed, B. Simon, Methods of modern mathematical physics, Vol. II, Academic Press, New York, 1975.
- Laurent Schwartz, Méthodes mathématiques pour les sciences physiques, Enseignement des Sciences, Hermann, Paris, 1961 (French). MR 0143360
- Daniel W. Stroock, Probability theory, an analytic view, Cambridge University Press, Cambridge, 1993. MR 1267569
Bibliographic Information
- Anna Karczewska
- Affiliation: Department of Mathematics, University of Zielona Góra, ul. Szafrana 4a, 65-246 Zielona Góra, Poland
- Email: A.Karczewska@im.uz.zgora.pl
- Carlos Lizama
- Affiliation: Departamento de Matemática, Facultad de Ciencias, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile
- MR Author ID: 114975
- Email: clizama@lauca.usach.cl
- Received by editor(s): April 15, 2005
- Received by editor(s) in revised form: August 25, 2005
- Published electronically: August 2, 2006
- Additional Notes: The second author was supported in part by FONDECYT Grant #1050084
- Communicated by: Richard C. Bradley
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 531-540
- MSC (2000): Primary 60H20; Secondary 60H05, 45D05
- DOI: https://doi.org/10.1090/S0002-9939-06-08487-5
- MathSciNet review: 2255300