An obstruction for the mean curvature of a conformal immersion $S^n\to \mathbb {R}^{n+1}$
HTML articles powered by AMS MathViewer
- by Bernd Ammann, Emmanuel Humbert and Mohameden Ould Ahmedou
- Proc. Amer. Math. Soc. 135 (2007), 489-493
- DOI: https://doi.org/10.1090/S0002-9939-06-08491-7
- Published electronically: August 28, 2006
- PDF | Request permission
Abstract:
We prove a Pohozaev type identity for non-linear eigenvalue equations of the Dirac operator on Riemannian spin manifolds with boundary. As an application, we obtain that the mean curvature $H$ of a conformal immersion $S^n\to \mathbb {R}^{n+1}$ satisfies $\int \partial _X H=0$ where $X$ is a conformal vector field on $S^n$ and where the integration is carried out with respect to the Euclidean volume measure of the image. This identity is analogous to the Kazdan-Warner obstruction that appears in the problem of prescribing the scalar curvature on $S^n$ inside the standard conformal class.References
- Christian Bär, Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Global Anal. Geom. 16 (1998), no. 6, 573–596. MR 1651379, DOI 10.1023/A:1006550532236
- Jean-Pierre Bourguignon and Jean-Pierre Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987), no. 2, 723–736. MR 882712, DOI 10.1090/S0002-9947-1987-0882712-7
- Jean-Pierre Bourguignon and Paul Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys. 144 (1992), no. 3, 581–599 (French, with English summary). MR 1158762, DOI 10.1007/BF02099184
- O. Druet and F. Robert, On the equivariance of the Kazdan-Warner and the Pohozaev identities, Preprint, 1999.
- Thomas Friedrich, On the spinor representation of surfaces in Euclidean $3$-space, J. Geom. Phys. 28 (1998), no. 1-2, 143–157. MR 1653146, DOI 10.1016/S0393-0440(98)00018-7
- Thomas Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke. MR 1777332, DOI 10.1090/gsm/025
- Oussama Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Comm. Math. Phys. 104 (1986), no. 1, 151–162. MR 834486, DOI 10.1007/BF01210797
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- R. Kusner and N. Schmitt, The spinor representation of surfaces in space, Preprint, http://www.arxiv.org/abs/dg-ga/9610005, 1996.
- S. I. Pohožaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36–39 (Russian). MR 0192184
Bibliographic Information
- Bernd Ammann
- Affiliation: Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Email: ammann@iecn.u-nancy.fr
- Emmanuel Humbert
- Affiliation: Institut Élie Cartan, BP 239, Université de Nancy 1, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Email: humbert@iecn.u-nancy.fr
- Mohameden Ould Ahmedou
- Affiliation: Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Email: ahmedou@analysis.mathematik.uni-tuebingen.de
- Received by editor(s): June 28, 2005
- Received by editor(s) in revised form: September 6, 2005
- Published electronically: August 28, 2006
- Communicated by: Mikhail Shubin
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 489-493
- MSC (2000): Primary 53A27, 53A30, 35J60
- DOI: https://doi.org/10.1090/S0002-9939-06-08491-7
- MathSciNet review: 2255295