Globalizations of partial actions on nonunital rings
HTML articles powered by AMS MathViewer
- by Michael Dokuchaev, Ángel Del Río and Juan Jacobo Simón
- Proc. Amer. Math. Soc. 135 (2007), 343-352
- DOI: https://doi.org/10.1090/S0002-9939-06-08503-0
- Published electronically: August 28, 2006
- PDF | Request permission
Abstract:
In this note we prove a criteria for the existence of a globalization for a given partial action of a group on an $s$-unital ring. If the globalization exists, it is unique in a natural sense. This extends the globalization theorem from Dokuchaev and Exel, 2005, obtained in the context of rings with $1.$References
- Fernando Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), no. 1, 14–67. MR 1957674, DOI 10.1016/S0022-1236(02)00032-0
- Fernando Abadie, On partial actions and groupoids, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1037–1047. MR 2045419, DOI 10.1090/S0002-9939-03-07300-3
- G. Abrams, J. Haefner, and A. del Río, Approximating rings with local units via automorphisms, Acta Math. Hungar. 82 (1999), no. 3, 229–248. MR 1674088, DOI 10.1023/A:1026460815618
- W. Cortes, M. Ferrero, Partial Skew Polynomial Rings: Prime and Maximal Ideals, Preprint.
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- M. Dokuchaev and R. Exel, Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1931–1952. MR 2115083, DOI 10.1090/S0002-9947-04-03519-6
- M. Dokuchaev, M. Ferrero, A. Paques, Partial Galois theory of commutative rings, Preprint.
- Ruy Exel, Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994), no. 2, 361–401. MR 1276163, DOI 10.1006/jfan.1994.1073
- Ruy Exel, Twisted partial actions: a classification of regular $C^*$-algebraic bundles, Proc. London Math. Soc. (3) 74 (1997), no. 2, 417–443. MR 1425329, DOI 10.1112/S0024611597000154
- Ruy Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3481–3494. MR 1469405, DOI 10.1090/S0002-9939-98-04575-4
- Ruy Exel, Amenability for Fell bundles, J. Reine Angew. Math. 492 (1997), 41–73. MR 1488064, DOI 10.1515/crll.1997.492.41
- Ruy Exel and Marcelo Laca, Cuntz-Krieger algebras for infinite matrices, J. Reine Angew. Math. 512 (1999), 119–172. MR 1703078, DOI 10.1515/crll.1999.051
- M. Ferrero, Partial actions of groups on semiprime rings, Preprint.
- José Luis García and Juan Jacobo Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), no. 1, 39–56. MR 1140639, DOI 10.1016/0022-4049(91)90096-K
- J. Kellendonk and Mark V. Lawson, Partial actions of groups, Internat. J. Algebra Comput. 14 (2004), no. 1, 87–114. MR 2041539, DOI 10.1142/S0218196704001657
- Kevin McClanahan, $K$-theory for partial crossed products by discrete groups, J. Funct. Anal. 130 (1995), no. 1, 77–117. MR 1331978, DOI 10.1006/jfan.1995.1064
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- Benjamin Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138 (2003), no. 2, 159–170. MR 1964463, DOI 10.1007/s00605-002-0521-0
- Robert Wisbauer, Foundations of module and ring theory, Revised and translated from the 1988 German edition, Algebra, Logic and Applications, vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. A handbook for study and research. MR 1144522
Bibliographic Information
- Michael Dokuchaev
- Affiliation: Departamento de Matemática, Universidade de São Paulo, Brazil
- MR Author ID: 231275
- ORCID: 0000-0003-1250-4831
- Email: dokucha@ime.usp.br
- Ángel Del Río
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, Spain
- MR Author ID: 288713
- Email: adelrio@um.es
- Juan Jacobo Simón
- Affiliation: Departamento de Matemáticas, Universidad de Murcia, Spain
- Email: jsimon@um.es
- Received by editor(s): April 26, 2005
- Received by editor(s) in revised form: September 20, 2005
- Published electronically: August 28, 2006
- Additional Notes: This research was supported by Capes and Fapesp of Brazil, D.G.I. of Spain and Fundación Séneca of Murcia
- Communicated by: Martin Lorenz
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 343-352
- MSC (2000): Primary 16S99; Secondary 16S10, 16S34, 16S35
- DOI: https://doi.org/10.1090/S0002-9939-06-08503-0
- MathSciNet review: 2255280