Strict contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering
HTML articles powered by AMS MathViewer
- by J. A. Carrillo, M. Di Francesco and G. Toscani
- Proc. Amer. Math. Soc. 135 (2007), 353-363
- DOI: https://doi.org/10.1090/S0002-9939-06-08594-7
- Published electronically: August 21, 2006
- PDF | Request permission
Abstract:
We show that the Euclidean Wasserstein distance between two compactly supported solutions of the one–dimensional porous medium equation having the same center of mass decays to zero for large times. As a consequence, we detect an improved $L^1$–rate of convergence of solutions of the one–dimensional porous medium equation towards well–centered self–similar Barenblatt profiles, as time goes to infinity.References
- Sigurd Angenent, Large time asymptotics for the porous media equation, Nonlinear diffusion equations and their equilibrium states, I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 12, Springer, New York, 1988, pp. 21–34. MR 956056, DOI 10.1007/978-1-4613-9605-5_{2}
- D. G. Aronson, The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR 877986, DOI 10.1007/BFb0072687
- José Antonio Carrillo, Maria Pia Gualdani, and Giuseppe Toscani, Finite speed of propagation in porous media by mass transportation methods, C. R. Math. Acad. Sci. Paris 338 (2004), no. 10, 815–818 (English, with English and French summaries). MR 2059493, DOI 10.1016/j.crma.2004.03.025
- José A. Carrillo, Robert J. McCann, and Cédric Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana 19 (2003), no. 3, 971–1018. MR 2053570, DOI 10.4171/RMI/376
- J. A. Carrillo and G. Toscani, Asymptotic $L^1$-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000), no. 1, 113–142. MR 1777035, DOI 10.1512/iumj.2000.49.1756
- J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys. 225 (2002), no. 3, 551–571. MR 1888873, DOI 10.1007/s002200100591
- J. A. Carrillo, R. J. McCann, and C. Villani, Contractions in the $2$-Wasserstein length space and thermalization of granular media, to appear in Archive for Rational Mechanics and Analysis (2005).
- J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, New trends in mathematical physics, World Sci. Publ., Hackensack, NJ, 2004, pp. 234–244. MR 2163983
- José A. Carrillo and Juan L. Vázquez, Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations 28 (2003), no. 5-6, 1023–1056. MR 1986060, DOI 10.1081/PDE-120021185
- Seng-Kee Chua and Richard L. Wheeden, Sharp conditions for weighted 1-dimensional Poincaré inequalities, Indiana Univ. Math. J. 49 (2000), no. 1, 143–175. MR 1777034, DOI 10.1512/iumj.2000.49.1754
- D. Cordero-Erausquin and R. J. McCann, Accelerated diffusion to minimum entropy, personal communication (2005).
- Jochen Denzler and Robert J. McCann, Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology, Arch. Ration. Mech. Anal. 175 (2005), no. 3, 301–342. MR 2126633, DOI 10.1007/s00205-004-0336-3
- Javier Duoandikoetxea and Enrique Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 6, 693–698 (French, with English and French summaries). MR 1183805
- Thierry Goudon, Stéphane Junca, and Giuseppe Toscani, Fourier-based distances and Berry-Esseen like inequalities for smooth densities, Monatsh. Math. 135 (2002), no. 2, 115–136. MR 1894092, DOI 10.1007/s006050200010
- Y. J. Kim and R. J. McCann, Potential theory and optimal convergence rates in fast nonlinear diffusion, Preprint, 2004.
- Y. J. Kim and W. M. Ni, Higher order approximations in the heat equation and the truncated moment problem, Preprint, 2005.
- R. J. McCann and D. Slepcev, Nearly optimal convergence rates for centered solutions to the fast-diffusion equations, Preprint, 2005.
- Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174. MR 1842429, DOI 10.1081/PDE-100002243
- Juan Luis Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space, J. Evol. Equ. 3 (2003), no. 1, 67–118. Dedicated to Philippe Bénilan. MR 1977429, DOI 10.1007/s000280300004
- Juan Luis Vázquez, Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), no. 2, 507–527. MR 694373, DOI 10.1090/S0002-9947-1983-0694373-7
- Juan Luis Vázquez, Behaviour of the velocity of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 286 (1984), no. 2, 787–802. MR 760987, DOI 10.1090/S0002-9947-1984-0760987-X
- Juan L. Vázquez, The interfaces of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 285 (1984), no. 2, 717–737. MR 752500, DOI 10.1090/S0002-9947-1984-0752500-8
- Juan Luis Vázquez, An introduction to the mathematical theory of the porous medium equation, Shape optimization and free boundaries (Montreal, PQ, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 380, Kluwer Acad. Publ., Dordrecht, 1992, pp. 347–389. MR 1260981
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- Thomas P. Witelski and Andrew J. Bernoff, Self-similar asymptotics for linear and nonlinear diffusion equations, Stud. Appl. Math. 100 (1998), no. 2, 153–193. MR 1491842, DOI 10.1111/1467-9590.00074
Bibliographic Information
- J. A. Carrillo
- Affiliation: Departament de Matemàtiques - ICREA, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- ORCID: 0000-0001-8819-4660
- Email: carrillo@mat.uab.es
- M. Di Francesco
- Affiliation: Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences (ÖAW), A-4040 Linz, Austria
- Address at time of publication: Sezione di Matematica per L’Ingegneria, Universita di L’Aquila, Piazzale Pontieri, Monteluco di Roio, I-67100 L’Aquila, Italy
- Email: marco.difrancesco@oeaw.ac.at
- G. Toscani
- Affiliation: Dipartimento di Matematica, Università di Pavia, I-27100 Pavia, Italy
- Email: giuseppe.toscani@unipv.it
- Received by editor(s): July 27, 2005
- Published electronically: August 21, 2006
- Communicated by: Walter Craig
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 353-363
- MSC (2000): Primary 35K65; Secondary 35B40
- DOI: https://doi.org/10.1090/S0002-9939-06-08594-7
- MathSciNet review: 2255281