On a problem of D. H. Lehmer
HTML articles powered by AMS MathViewer
- by Stéphane R. Louboutin, Joël Rivat and András Sárközy
- Proc. Amer. Math. Soc. 135 (2007), 969-975
- DOI: https://doi.org/10.1090/S0002-9939-06-08558-3
- Published electronically: September 26, 2006
- PDF | Request permission
Abstract:
Let $p$ be an odd prime number. For $n\in \{1,\ldots ,p-1\}$ we denote the inverse of $n$ modulo $p$ by $n^{*}$ with $n^{*}\in \{1,\ldots ,p-1\}$. Given $\varepsilon >0$, we prove that in any range $n\in \{N+1,\ldots ,N+L\}\subseteq \{1,\ldots ,p-1\}$ of length $L\geq p^{1/2+\varepsilon }$ the probability that $n^{*}$ has the same parity as $n$ tends to $1/2$ as $p\rightarrow +\infty$. This result was previously known only to hold true in the full range $n\in \{1,\ldots ,p-1\}$ of length $L=p-1$. We will also obtain quantitative results on the pseudorandomness of the sequence $(-1)^{n+n^{*}}$ for which we estimate the well-distribution $W$ and correlation measures $C_k$ as defined by Mauduit and Sárközy (1997).References
- N. Alon, Y. Kohayakawa, C. Mauduit, C.-G. Moreira, and V. Rödl, Measures of pseudorandomness for finite sequences: minimum and typical values, submitted to Combinatorics, Probability and Computation (to appear).
- Julien Cassaigne, Christian Mauduit, and András Sárközy, On finite pseudorandom binary sequences. VII. The measures of pseudorandomness, Acta Arith. 103 (2002), no. 2, 97–118. MR 1904866, DOI 10.4064/aa103-2-1
- Jürgen Eichenauer-Herrmann and Harald Niederreiter, Bounds for exponential sums and their applications to pseudorandom numbers, Acta Arith. 67 (1994), no. 3, 269–281. MR 1292739, DOI 10.4064/aa-67-3-269-281
- Étienne Fouvry, Philippe Michel, Joël Rivat, and András Sárközy, On the pseudorandomness of the signs of Kloosterman sums, J. Aust. Math. Soc. 77 (2004), no. 3, 425–436. MR 2099811, DOI 10.1017/S1446788700014543
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- Christian Mauduit and András Sárközy, On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), no. 4, 365–377. MR 1483689, DOI 10.4064/aa-82-4-365-377
- C. Mauduit and A. Sárközy, Construction of pseudorandom binary sequences by using the multiplicative inverse, Acta Math. Hungar. 108 (2005), no. 3, 239–252. MR 2162562, DOI 10.1007/s10474-005-0222-y
- Carlos J. Moreno and Oscar Moreno, Exponential sums and Goppa codes. I, Proc. Amer. Math. Soc. 111 (1991), no. 2, 523–531. MR 1028291, DOI 10.1090/S0002-9939-1991-1028291-1
- Joël Rivat and András Sárközy, Modular constructions of pseudorandom binary sequences with composite moduli, Period. Math. Hungar. 51 (2005), no. 2, 75–107. MR 2194941, DOI 10.1007/s10998-005-0031-7
- André Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Publ. Inst. Math. Univ. Strasbourg, vol. 7, Hermann & Cie, Paris, 1948 (French). MR 0027151
- Zhang Wenpeng, On a problem of D. H. Lehmer and its generalization, Compositio Math. 86 (1993), no. 3, 307–316. MR 1219630
- Wen Peng Zhang, A problem of D. H. Lehmer and its generalization. II, Compositio Math. 91 (1994), no. 1, 47–56. MR 1273925
- Yuan Yi and Wen-peng Zhang, On generalization of Lehmer D H problem, Gongcheng Shuxue Xuebao 20 (2003), no. 1, 60–64 (English, with English and Chinese summaries). MR 1975320
- Wenpeng Zhang, A problem of D. H. Lehmer and its mean square value formula, Japan. J. Math. (N.S.) 29 (2003), no. 1, 109–116. MR 1986866, DOI 10.4099/math1924.29.109
- Zhang Wenpeng, On a problem of D. H. Lehmer and Kloosterman sums, Monatsh. Math. 139 (2003), no. 3, 247–257. MR 1994384, DOI 10.1007/s00605-002-0529-5
- Wenpeng Zhang, Xu Zongben, and Yi Yuan, A problem of D. H. Lehmer and its mean square value formula, J. Number Theory 103 (2003), no. 2, 197–213. MR 2020268, DOI 10.1016/S0022-314X(03)00113-6
Bibliographic Information
- Stéphane R. Louboutin
- Affiliation: Institut de Mathématiques de Luminy, UMR 6206, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: loubouti@iml.univ-mrs.fr
- Joël Rivat
- Affiliation: Institut de Mathématiques de Luminy, UMR 6206, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: rivat@iml.univ-mrs.fr
- András Sárközy
- Affiliation: Department of Algebra and Number Theory, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/c, Hungary
- Email: sarkozy@cs.elte.hu
- Received by editor(s): August 8, 2005
- Received by editor(s) in revised form: November 8, 2005
- Published electronically: September 26, 2006
- Additional Notes: The research of the third author was partially supported by the Hungarian National Foundation for Scientific Research, Grants No T043623 and T049693. This paper was written when the third author was visiting the Institut de Mathématiques de Luminy.
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 969-975
- MSC (2000): Primary 11K45; Secondary 11L05, 11L40
- DOI: https://doi.org/10.1090/S0002-9939-06-08558-3
- MathSciNet review: 2262896