$\mathcal {K}$-bi-Lipschitz equivalence of real function-germs
HTML articles powered by AMS MathViewer
- by L. Birbrair, J. C. F. Costa, A. Fernandes and M. A. S. Ruas
- Proc. Amer. Math. Soc. 135 (2007), 1089-1095
- DOI: https://doi.org/10.1090/S0002-9939-06-08566-2
- Published electronically: October 27, 2006
- PDF | Request permission
Abstract:
In this paper we prove that the set of equivalence classes of germs of real polynomials of degree less than or equal to $k$, with respect to $\mathcal {K}$-bi-Lipschitz equivalence, is finite.References
- S. Alvarez, L. Birbrair, J. Costa, A. Fernandes, Topological $\mathcal {K}$-equivalence of analytic function-germs, preprint (2004).
- Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1990. MR 1070358
- Riccardo Benedetti and Masahiro Shiota, Finiteness of semialgebraic types of polynomial functions, Math. Z. 208 (1991), no. 4, 589–596. MR 1136477, DOI 10.1007/BF02571547
- M. Coste, An introduction to o-minimal geometry. Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa. Instituti Editoriali e Poligrafici Internazionali 2000.
- Takuo Fukuda, Types topologiques des polynômes, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 87–106 (French). MR 494152
- Jean-Pierre Henry and Adam Parusiński, Existence of moduli for bi-Lipschitz equivalence of analytic functions, Compositio Math. 136 (2003), no. 2, 217–235. MR 1967391, DOI 10.1023/A:1022726806349
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308. MR 275459
- James A. Montaldi, On contact between submanifolds, Michigan Math. J. 33 (1986), no. 2, 195–199. MR 837577, DOI 10.1307/mmj/1029003348
- Tadeusz Mostowski, Lipschitz equisingularity, Dissertationes Math. (Rozprawy Mat.) 243 (1985), 46. MR 808226
- Isao Nakai, On topological types of polynomial mappings, Topology 23 (1984), no. 1, 45–66. MR 721451, DOI 10.1016/0040-9383(84)90024-7
- Adam Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 189–213 (English, with French summary). MR 978246
- C. Sabbah, Le type topologique éclaté d’une application analytique, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 433–440 (French). MR 713269, DOI 10.1090/pspum/040.2/713269
- René Thom, La stabilité topologique des applications polynomiales, Enseign. Math. (2) 8 (1962), 24–33 (French). MR 148079
Bibliographic Information
- L. Birbrair
- Affiliation: Departamento de Matemàtica, Universidade Federal do Cearà, Av. Mister Hull s/u Campus do PICI, Bloco 914, CEP 60, 455-760 Fortaleza-CE, Brazil
- J. C. F. Costa
- Affiliation: Departamento de Matemàtica (IBILCE), Universidade Estadual Paulista, Sao Jose de Rio Preto, SP 15054-000 Brazil
- A. Fernandes
- Affiliation: Departamento de Matemàtica, Universidade Federal do Cearà, Av. Mister Hull s/u Campus do PICI, Bloco 914, CEP 60, 455-760 Fortaleza-CE, Brazil
- MR Author ID: 676391
- M. A. S. Ruas
- Affiliation: Institute of Sciences and Mathematics, University of Sao Paulo, Sao Carlos SP, Brazil
- MR Author ID: 239264
- ORCID: 0000-0001-8890-524X
- Received by editor(s): May 14, 2005
- Received by editor(s) in revised form: November 4, 2005
- Published electronically: October 27, 2006
- Additional Notes: The first named author was supported by CNPq grant No. 300985/93-2.
The second named author was supported by Fapesp grant No. 01/14577-0.
The fourth named author was supported by CNPq grant No. 301474/2005-2. - Communicated by: Mikhail Shubin
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 1089-1095
- MSC (2000): Primary 32S15, 32S05
- DOI: https://doi.org/10.1090/S0002-9939-06-08566-2
- MathSciNet review: 2262910