Sharp Berezin Lipschitz estimates
HTML articles powered by AMS MathViewer
- by L. A. Coburn
- Proc. Amer. Math. Soc. 135 (2007), 1163-1168
- DOI: https://doi.org/10.1090/S0002-9939-06-08569-8
- Published electronically: October 13, 2006
- PDF | Request permission
Abstract:
F.A. Berezin introduced a general “symbol calculus" for linear operators on reproducing kernel Hilbert spaces. For the Segal-Bargmann space $H^2(\mathbf {C}^n,d\mu )$ of Gaussian square-integrable entire functions on complex $n$-space, $\mathbf {C}^n$, or for the Bergman spaces $A^2 (\Omega )$ of Euclidean volume square-integrable holomorphic functions on bounded domains $\Omega$ in $\mathbf {C}^n$, we show here that earlier Lipschitz estimates for Berezin symbols of arbitrary bounded operators are sharp.References
- Sheldon Axler and Dechao Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47 (1998), no. 2, 387–400. MR 1647896, DOI 10.1512/iumj.1998.47.1407
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167 (Russian). MR 0350504
- F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). MR 0395610
- D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), no. 2, 310–350. MR 1073289, DOI 10.1016/0022-1236(90)90131-4
- C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813–829. MR 882716, DOI 10.1090/S0002-9947-1987-0882716-4
- C. A. Berger and L. A. Coburn, Heat flow and Berezin-Toeplitz estimates, Amer. J. Math. 116 (1994), no. 3, 563–590. MR 1277446, DOI 10.2307/2374991
- L. A. Coburn, A Lipschitz estimate for Berezin’s operator calculus, Proc. Amer. Math. Soc. 133 (2005), no. 1, 127–131. MR 2085161, DOI 10.1090/S0002-9939-04-07476-3
- Miroslav Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Equations Operator Theory 33 (1999), no. 4, 426–455. MR 1682815, DOI 10.1007/BF01291836
- M. Engliš and G. Zhang, On the derivatives of the Berezin transform, Proceedings of the American Mathematical Society, 134 (2006), 2285–2294.
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Victor Guillemin, Toeplitz operators in $n$ dimensions, Integral Equations Operator Theory 7 (1984), no. 2, 145–205. MR 750217, DOI 10.1007/BF01200373
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- T. Mazur, P. Pflug, and M. Skwarczyński, Invariant distances related to the Bergman function, Proc. Amer. Math. Soc. 94 (1985), no. 1, 72–76. MR 781059, DOI 10.1090/S0002-9939-1985-0781059-0
Bibliographic Information
- L. A. Coburn
- Affiliation: Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260
- Email: lcoburn@buffalo.edu
- Received by editor(s): October 18, 2005
- Received by editor(s) in revised form: November 15, 2005
- Published electronically: October 13, 2006
- Communicated by: Joseph A. Ball
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 1163-1168
- MSC (2000): Primary 47B32; Secondary 32A36
- DOI: https://doi.org/10.1090/S0002-9939-06-08569-8
- MathSciNet review: 2262921