Countable compact Hausdorff spaces need not be metrizable in ZF
HTML articles powered by AMS MathViewer
- by Kyriakos Keremedis and Eleftherios Tachtsis
- Proc. Amer. Math. Soc. 135 (2007), 1205-1211
- DOI: https://doi.org/10.1090/S0002-9939-06-08572-8
- Published electronically: October 4, 2006
- PDF | Request permission
Abstract:
We show that the existence of a countable, first countable, zero-dimensional, compact Hausdorff space which is not second countable, hence not metrizable, is consistent with ZF.References
- Eric K. van Douwen, Horrors of topology without $\textrm {AC}$: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), no. 1, 101–105. MR 796455, DOI 10.1090/S0002-9939-1985-0796455-5
- S. Feferman, Some applications of the notions of forcing and generic sets, Fund. Math. 56 (1964/65), 325–345. MR 176925, DOI 10.4064/fm-56-3-325-345
- C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63 (1995), no. 1, 79–90. MR 1328621, DOI 10.1016/0166-8641(95)90010-1
- C. Good, I. J. Tree, and W. S. Watson, On Stone’s theorem and the axiom of choice, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1211–1218. MR 1425122, DOI 10.1090/S0002-9939-98-04163-X
- H. Herrlich, Axiom of Choice, Lecture Notes in Mathematics, Springer-Verlag Vol. 1876, Berlin, Heidelberg, 2006.
- Paul Howard, Kyriakos Keremedis, Herman Rubin, and Jean E. Rubin, Disjoint unions of topological spaces and choice, MLQ Math. Log. Q. 44 (1998), no. 4, 493–508. MR 1654348, DOI 10.1002/malq.19980440408
- Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, Mathematical Surveys and Monographs, vol. 59, American Mathematical Society, Providence, RI, 1998. With 1 IBM-PC floppy disk (3.5 inch; WD). MR 1637107, DOI 10.1090/surv/059
- Thomas J. Jech, The axiom of choice, Studies in Logic and the Foundations of Mathematics, Vol. 75, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0396271
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- J. L. Kelley, The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75–76. MR 39982, DOI 10.4064/fm-37-1-75-76
- Kyriakos Keremedis, Disasters in topology without the axiom of choice, Arch. Math. Logic 40 (2001), no. 8, 569–580. MR 1867681, DOI 10.1007/s001530100094
- Kyriakos Keremedis and Eleftherios Tachtsis, Countable sums and products of metrizable spaces in ZF, MLQ Math. Log. Q. 51 (2005), no. 1, 95–103. MR 2099390, DOI 10.1002/malq.200410011
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
- L. E. Ward Jr., A weak Tychonoff theorem and the axiom of choice, Proc. Amer. Math. Soc. 13 (1962), 757–758. MR 186537, DOI 10.1090/S0002-9939-1962-0186537-8
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
- E. S. Wolk, On theorems of Tychonoff, Alexander, and R. Rado, Proc. Amer. Math. Soc. 18 (1967), 113–115. MR 203680, DOI 10.1090/S0002-9939-1967-0203680-X
Bibliographic Information
- Kyriakos Keremedis
- Affiliation: Department of Mathematics, University of the Aegean, Karlovassi, 83 200, Samos, Greece
- Email: kker@aegean.gr
- Eleftherios Tachtsis
- Affiliation: Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, 83 200, Samos, Greece
- MR Author ID: 657401
- Email: ltah@aegean.gr
- Received by editor(s): March 18, 2005
- Received by editor(s) in revised form: May 15, 2005, November 5, 2005, and November 10, 2005
- Published electronically: October 4, 2006
- Communicated by: Julia Knight
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 1205-1211
- MSC (2000): Primary 03E25, 03E35, 54A35, 54D10, 54D30, 54D35, 54D65, 54D70, 54E35
- DOI: https://doi.org/10.1090/S0002-9939-06-08572-8
- MathSciNet review: 2262927