A prediction problem in $L^2 (w)$
HTML articles powered by AMS MathViewer
- by Mohsen Pourahmadi, Akihiko Inoue and Yukio Kasahara
- Proc. Amer. Math. Soc. 135 (2007), 1233-1239
- DOI: https://doi.org/10.1090/S0002-9939-06-08575-3
- Published electronically: October 18, 2006
- PDF | Request permission
Abstract:
For a nonnegative integrable weight function $w$ on the unit circle $T$, we provide an expression for $p=2$, in terms of the series coefficients of the outer function of $w$, for the weighted $L^p$ distance $\inf _f \int _T|1-f|^p wd \mu$, where $\mu$ is the normalized Lebesgue measure and $f$ ranges over trigonometric polynomials with frequencies in $[\{\dots ,-3,-2,-1\}\setminus \{-n\}]\cup \{m\}$, $m \geq 0$, $n \geq 2$. The problem is open for $p \neq 2$.References
- Stamatis Cambanis and A. Reza Soltani, Prediction of stable processes: spectral and moving average representations, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 4, 593–612. MR 753815, DOI 10.1007/BF00531892
- R. Cheng, A. G. Miamee, and M. Pourahmadi, Some extremal problems in $L^p(w)$, Proc. Amer. Math. Soc. 126 (1998), no. 8, 2333–2340. MR 1443377, DOI 10.1090/S0002-9939-98-04275-0
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Michael Frank and Lutz Klotz, A duality method in prediction theory of multivariate stationary sequences, Math. Nachr. 244 (2002), 64–77. MR 1928917, DOI 10.1002/1522-2616(200210)244:1<64::AID-MANA64>3.0.CO;2-P
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- L. Klotz and M. Riedel, Some remarks on duality of stationary sequences, Colloq. Math. 92 (2002), no. 2, 225–228. MR 1899439, DOI 10.4064/cm92-2-6
- A. N. Kolmogorov, Stationary sequences in a Hilbert space, Bull. Moscow State University 2 (1941), 1–40.
- A. G. Miamee, On basicity of exponentials in $L^p(d\mu )$ and general prediction problems, Period. Math. Hungar. 26 (1993), no. 2, 115–124. MR 1230571, DOI 10.1007/BF01876313
- A. G. Miamee and Mohsen Pourahmadi, Best approximations in $L^p(d\mu )$ and prediction problems of Szegő, Kolmogorov, Yaglom, and Nakazi, J. London Math. Soc. (2) 38 (1988), no. 1, 133–145. MR 949088, DOI 10.1112/jlms/s2-38.1.133
- Takahiko Nakazi, Two problems in prediction theory, Studia Math. 78 (1984), no. 1, 7–14. MR 766702, DOI 10.4064/sm-78-1-7-14
- Takahiko Nakazi and Katutoshi Takahashi, Prediction $n$ units of time ahead, Proc. Amer. Math. Soc. 80 (1980), no. 4, 658–659. MR 587949, DOI 10.1090/S0002-9939-1980-0587949-1
- Mohsen Pourahmadi, Taylor expansion of $\textrm {exp}(\sum ^{\infty }_{k=0}a_{k}z^{k})$ and some applications, Amer. Math. Monthly 91 (1984), no. 5, 303–307. MR 740245, DOI 10.2307/2322674
- M. Pourahmadi, Two prediction problems and extensions of a theorem of Szegő, Bull. Iranian Math. Soc. 19 (1993), no. 2, 1–12. MR 1289507
- Mohsen Pourahmadi, Foundations of time series analysis and prediction theory, Wiley Series in Probability and Statistics: Applied Probability and Statistics, Wiley-Interscience, New York, 2001. MR 1849562
- K. Urbanik, A duality principle for stationary random sequences, Colloq. Math. 86 (2000), no. 2, 153–162. MR 1808671, DOI 10.4064/cm-86-2-153-162
- N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes. II. The linear predictor, Acta Math. 99 (1958), 93–137. MR 97859, DOI 10.1007/BF02392423
Bibliographic Information
- Mohsen Pourahmadi
- Affiliation: Division of Statistics, Northern Illinois University, DeKalb, Illinois 60115-2854
- MR Author ID: 141590
- Email: pourahm@math.niu.edu
- Akihiko Inoue
- Affiliation: Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Email: inoue@math.sci.hokudai.ac.jp
- Yukio Kasahara
- Affiliation: Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- MR Author ID: 676493
- Email: y-kasa@math.sci.hokudai.ac.jp
- Received by editor(s): October 4, 2005
- Received by editor(s) in revised form: November 17, 2005
- Published electronically: October 18, 2006
- Additional Notes: The work of the first author was supported by NSF grants DMS-0307055 and DMS-0505696.
- Communicated by: Richard C. Bradley
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 1233-1239
- MSC (2000): Primary 54C40, 14E20; Secondary 46E25, 20C20
- DOI: https://doi.org/10.1090/S0002-9939-06-08575-3
- MathSciNet review: 2262930