The global attractivity of the rational difference equation $y_{n}=1+\frac {y_{n-k}}{y_{n-m}}$
HTML articles powered by AMS MathViewer
- by Kenneth S. Berenhaut, John D. Foley and Stevo Steviฤ
- Proc. Amer. Math. Soc. 135 (2007), 1133-1140
- DOI: https://doi.org/10.1090/S0002-9939-06-08580-7
- Published electronically: October 4, 2006
- PDF | Request permission
Abstract:
This paper studies the behavior of positive solutions of the recursive equation \begin{eqnarray} y_{n}=1+\frac {y_{n-k}}{y_{n-m}}, ~~ n=0,1,2,\ldots , \nonumber \end{eqnarray} with $y_{-s},y_{-s+1}, \ldots , y_{-1} \in (0, \infty )$ and $k,m \in \{1,2,3,4,\ldots \}$, where $s=\max \{k,m\}$. We prove that if $\mathrm {gcd}(k,m) = 1$, with $k$ odd, then $y_n$ tends to $2$, exponentially. When combined with a recent result of E. A. Grove and G. Ladas (Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004)), this answers the question when $y=2$ is a global attractor.References
- R. M. Abu-Saris and R. DeVault, Global stability of $y_{n+1}=A+\frac {y_n}{y_{n-k}}$, Appl. Math. Lett. 16 (2003), no.ย 2, 173โ178. MR 1962312, DOI 10.1016/S0893-9659(03)80028-9
- A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, On the recursive sequence $x_{n+1}=\alpha +x_{n-1}/x_n$, J. Math. Anal. Appl. 233 (1999), no.ย 2, 790โ798. MR 1689579, DOI 10.1006/jmaa.1999.6346
- K. S. Berenhaut, J. D. Foley and S. Steviฤ, Quantitative bounds for the recursive sequence $y_{n+1}=A+\frac {y_{n}}{y_{n-k}}$, Appl. Math. Lett., in press, (2005).
- E. Camouzis, G. Ladas, and H. D. Voulov, On the dynamics of $x_{n+1}={\alpha +\gamma x_{n-1}+\delta x_{n-2}\over A+x_{n-2}}$, J. Difference Equ. Appl. 9 (2003), no.ย 8, 731โ738. Special Session of the American Mathematical Society Meeting, Part II (San Diego, CA, 2002). MR 1992906, DOI 10.1080/1023619021000042153
- H. El-Metwally, E. A. Grove, G. Ladas, and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl. 7 (2001), no.ย 6, 837โ850. On the occasion of the 60th birthday of Calvin Ahlbrandt. MR 1870725, DOI 10.1080/10236190108808306
- C. H. Gibbons, M. R. S. Kulenoviฤ, G. Ladas, and H. D. Voulov, On the trichotomy character of $x_{n+1}=(\alpha +\beta x_n+\gamma x_{n-1})/(A+x_n)$, J. Difference Equ. Appl. 8 (2002), no.ย 1, 75โ92. MR 1884593, DOI 10.1080/10236190211940
- E. A. Grove and G. Ladas, Periodicities in nonlinear difference equations, Advances in Discrete Mathematics and Applications, vol. 4, Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2193366
- V. L. Kociฤ and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1247956, DOI 10.1007/978-94-017-1703-8
- W. T. Patula and H. D. Voulov, On the oscillation and periodic character of a third order rational difference equation, Proc. Amer. Math. Soc. 131 (2003), no.ย 3, 905โ909. MR 1937429, DOI 10.1090/S0002-9939-02-06611-X
- Stevo Steviฤ, Behavior of the positive solutions of the generalized Beddington-Holt equation, PanAmer. Math. J. 10 (2000), no.ย 4, 77โ85. MR 1801533
- Stevo Steviฤ, A note on periodic character of a difference equation, J. Difference Equ. Appl. 10 (2004), no.ย 10, 929โ932. MR 2079642, DOI 10.1080/10236190412331272616
Bibliographic Information
- Kenneth S. Berenhaut
- Affiliation: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
- Email: berenhks@wfu.edu
- John D. Foley
- Affiliation: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
- Email: folejd4@wfu.edu
- Stevo Steviฤ
- Affiliation: Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I 11000 Beograd, Serbia
- Email: sstevic@ptt.yu, sstevo@matf.bg.ac.yu
- Received by editor(s): September 7, 2005
- Received by editor(s) in revised form: November 11, 2005
- Published electronically: October 4, 2006
- Additional Notes: The first author acknowledges financial support from a Sterge Faculty Fellowship.
- Communicated by: Carmen C. Chicone
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 1133-1140
- MSC (2000): Primary 39A10, 39A11
- DOI: https://doi.org/10.1090/S0002-9939-06-08580-7
- MathSciNet review: 2262916