An affine restriction estimate in $\mathbb {R}^3$
HTML articles powered by AMS MathViewer
- by Bassam Shayya
- Proc. Amer. Math. Soc. 135 (2007), 1107-1113
- DOI: https://doi.org/10.1090/S0002-9939-06-08604-7
- Published electronically: September 26, 2006
- PDF | Request permission
Abstract:
We prove that the Fourier transform of an $L^{4/3}$ function can be restricted to any compact convex $C^2$ surface of revolution in $\mathbb {R}^3$.References
- F. Abi-Khuzam and B. Shayya, Fourier restriction to convex surfaces of revolution in $\mathbb {R}^3$, Publ. Mat. 50 (2006), 71–85.
- A. D. Alexandroff, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 6 (1939), 3–35 (Russian). MR 0003051
- Anthony Carbery and Sarah Ziesler, Restriction and decay for flat hypersurfaces, Publ. Mat. 46 (2002), no. 2, 405–434. MR 1934361, DOI 10.5565/PUBLMAT_{4}6202_{0}4
- Georg Dolzmann and Daniel Hug, Equality of two representations of extended affine surface area, Arch. Math. (Basel) 65 (1995), no. 4, 352–356. MR 1349190, DOI 10.1007/BF01195547
- Daniel Hug, Contributions to affine surface area, Manuscripta Math. 91 (1996), no. 3, 283–301. MR 1416712, DOI 10.1007/BF02567955
- Monika Ludwig and Matthias Reitzner, A characterization of affine surface area, Adv. Math. 147 (1999), no. 1, 138–172. MR 1725817, DOI 10.1006/aima.1999.1832
- Erwin Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 1087796, DOI 10.1016/0001-8708(91)90049-D
- Daniel M. Oberlin, Fourier restriction for affine arclength measures in the plane, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3303–3305. MR 1845006, DOI 10.1090/S0002-9939-01-06012-9
- Daniel M. Oberlin, A uniform Fourier restriction theorem for surfaces in $\Bbb R^3$, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1195–1199. MR 2045437, DOI 10.1090/S0002-9939-03-07289-7
- Daniel M. Oberlin, Two estimates for curves in the plane, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3195–3201. MR 2073293, DOI 10.1090/S0002-9939-04-07610-5
- Carsten Schütt, On the affine surface area, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1213–1218. MR 1181173, DOI 10.1090/S0002-9939-1993-1181173-9
- Carsten Schütt and Elisabeth Werner, The convex floating body, Math. Scand. 66 (1990), no. 2, 275–290. MR 1075144, DOI 10.7146/math.scand.a-12311
- Per Sjölin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in $R^{2}$, Studia Math. 51 (1974), 169–182. MR 385437, DOI 10.4064/sm-51-2-169-182
Bibliographic Information
- Bassam Shayya
- Affiliation: Department of Mathematics, American University of Beirut, Beirut, Lebanon
- Email: bshayya@aub.edu.lb
- Received by editor(s): November 7, 2005
- Published electronically: September 26, 2006
- Communicated by: Michael T. Lacey
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 1107-1113
- MSC (2000): Primary 42B10; Secondary 52A15
- DOI: https://doi.org/10.1090/S0002-9939-06-08604-7
- MathSciNet review: 2262912