Minimal numerical-radius extensions of operators
HTML articles powered by AMS MathViewer
- by A. G. Aksoy and B. L. Chalmers
- Proc. Amer. Math. Soc. 135 (2007), 1039-1050
- DOI: https://doi.org/10.1090/S0002-9939-06-08609-6
- Published electronically: September 18, 2006
- PDF | Request permission
Abstract:
In this paper we characterize minimal numerical-radius extensions of operators from finite-dimensional subspaces and compare them with minimal operator-norm extensions. We note that in the cases $L^p,\ p = 1, \infty$, and in the case of self-adjoint extensions in $L^2$, the two extensions and their norms are equal. We also show that, in the case of $L^p$, $1<p<\infty$, and more generally in the case of the dual space being strictly convex, if the minimal projections with respect to the operator norm and with respect to the numerical radius have equal norms, then the operator norm is $1$. An analogous result is also true for an arbitrary extension. Finally, we provide an example of a projection from $l_3^p$ onto a two-dimensional subspace which is minimal with respect to norm but not with respect to the numerical radius for $p \ne 1, 2, \infty$, and we determine the minimal numerical-radius projection in this same situation.References
- Asuman Güven Aksoy, $Q$-compact sets and $Q$-compact maps, Math. Japon. 36 (1991), no. 1, 1–7. MR 1093346
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583
- B. L. Chalmers, Minimal projections in $l_3^p$, in preparation.
- Bruce L. Chalmers and Grzegorz Lewicki, Symmetric spaces with maximal projection constants, J. Funct. Anal. 200 (2003), no. 1, 1–22. MR 1974085, DOI 10.1016/S0022-1236(02)00080-0
- B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), no. 1, 31–46. MR 1332442
- B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in $L^1$, Trans. Amer. Math. Soc. 329 (1992), no. 1, 289–305. MR 1034660, DOI 10.1090/S0002-9947-1992-1034660-1
- B. L. Chalmers and F. T. Metcalf, Critical points of the $n$-dimensional Khintchine ratio and Rademacher projection norms, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 125–128. MR 1090980, DOI 10.1007/978-3-662-10882-6_{1}2
- B. L. Chalmers and F. T. Metcalf, Determination of a minimal projection from $C[-1,1]$ onto the quadratics, Numer. Funct. Anal. Optim. 11 (1990), no. 1-2, 1–10. MR 1058773, DOI 10.1080/01630569008816357
- B. L. Chalmers and B. Shekhtman, A two-dimensional Hahn-Banach theorem, Proc. Amer. Math. Soc. 129 (2001), no. 3, 719–724. MR 1801997, DOI 10.1090/S0002-9939-00-05944-X
- Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997. The field of values of linear operators and matrices. MR 1417493, DOI 10.1007/978-1-4613-8498-4
- P. D. Morris and E. W. Cheney, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61–76. MR 358188, DOI 10.1515/crll.1974.270.61
- Elmouloudi Ed-Dari and Mohamed Amine Khamsi, The numerical index of the $L_p$ space, Proc. Amer. Math. Soc. 134 (2006), no. 7, 2019–2025. MR 2215771, DOI 10.1090/S0002-9939-05-08231-6
- Shaul R. Foguel, On a theorem by A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325. MR 93696, DOI 10.1090/S0002-9939-1958-0093696-3
- Ginés López, Miguel Martín, and Rafael Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), no. 2, 207–212. MR 1664125, DOI 10.1112/S002460939800513X
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044
- H. König and N. Tomczak-Jaegermann, Finite-dimensional spaces with maximal projection constant lie in ${L}^ 1$, Studia Math., to appear.
- V. P. Odinec, The uniqueness of minimal projections in Banach spaces, Dokl. Akad. Nauk SSSR 220 (1975), 779–781 (Russian). MR 0470666
- A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538–547. MR 345
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- A. G. Aksoy
- Affiliation: Department of Mathematics, Claremont McKenna College, Claremont, California 91711
- MR Author ID: 24095
- Email: asuman.aksoy@claremontmckenna.edu
- B. L. Chalmers
- Affiliation: Department of Mathematics, University of California, Riverside, California 92507
- Email: blc@math.ucr.edu
- Received by editor(s): October 22, 2005
- Published electronically: September 18, 2006
- Communicated by: Jonathan M. Borwein
- © Copyright 2006 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 1039-1050
- MSC (2000): Primary 41A35; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9939-06-08609-6
- MathSciNet review: 2262904