A MINIMUM FIXED POINT THEOREM FOR SMOOTH FIBER PRESERVING MAPS

CATHERINE LEE

(Communicated by Paul Goerss)

This paper is dedicated to my advisor, Robert F. Brown

ABSTRACT. Let $p : E \to B$ be a smooth fiber bundle. Given a smooth fiber preserving map $f : E \to E$, we will show that f can be deformed by a smooth, fiber preserving homotopy to a smooth map $g : E \to E$ such that the number of fixed points of g is equal to the fiberwise Nielsen number of f. For a given map $f : X \to X$, where X is a compact ANR, the Nielsen number of f, denoted $N(f)$, is a lower bound for the number of fixed points of maps homotopic to f. Wecken proved that if X is a triangulated manifold of dimension greater than or equal to 3, there is a map g homotopic to f that has $N(f)$ fixed points [6]. A space is said to be Wecken if every self map of it has this property. Brown later proved that topological manifolds of dimension at least 3 are Wecken [1]. The corresponding theorem in the smooth category was proved by Jiang in [4]. He showed that for a smooth manifold M of dimension ≥ 3, if $f : M \to M$ is a smooth map, then f can always be smoothly deformed to a map g with exactly $N(f)$ fixed points.

The goal of this note is to apply Jiang’s smooth Wecken theorem to prove a smooth version of a Wecken-type theorem for fiber preserving maps of Heath, Keppelmann and Wong [3]. In the setting of this theorem, $p : E \to B$ is a fibration of compact connected ANR’s. Then the pair (f, \bar{f}) is called a fiber preserving map of p if $f : E \to E$, $\bar{f} : B \to B$ and the condition $fp = pf$ is satisfied. The fiberwise Nielsen number $N_X(f, p)$ of (f, \bar{f}), also known as the naïve addition formula, is then defined to be $N_X(f, p) = \sum_{x \in \xi} N(f_x)$, where ξ is a set consisting of one point from each essential fixed point class of \bar{f}. If $g : E \to E$ is homotopic to f by a fiber preserving homotopy, then g has at least $N_X(f, p)$ fixed points.

Theorem 1 (Heath, Keppelmann, Wong). Let (f, \bar{f}) be a fiber preserving map from p to itself with the property that \bar{f} is homotopic to a map \bar{g} that has exactly $N(\bar{f})$ fixed points. Suppose further that every fiber over the unique set of essential representatives for \bar{g} is a Wecken space. Then there is a fiber preserving map (g, \bar{g}) that is fiber homotopic to (f, \bar{f}) with the property that g has exactly $N_X(f, p)$ fixed points.
For the fiber Wecken theorem in the smooth category, we must assume that we have a smooth fiber bundle. This consists of a smooth surjective map \(p : E \to B \), where \(E \) and \(B \) are smooth compact manifolds with or without boundary. Furthermore, \(B \) can be covered by a system of local coordinate neighborhoods \(\{ U_\alpha \} \) such that there are diffeomorphisms \(\phi_{U_\alpha} : U_\alpha \times F \to p^{-1}(U_\alpha) \) satisfying \(p\phi_{U_\alpha}(x, y) = x \).

We will prove the following.

Theorem 2. If \(p : E \to B \) is a smooth fiber bundle with \(\dim B, F \geq 3 \) and \((f, \tilde{f}) \) is a smooth fiber preserving map of \(p \), then there exists a smooth fiber preserving map \((g, \tilde{g}) \) smoothly fiber preserving homotopic to \((f, \tilde{f}) \) such that \(g \) has \(N_X(f, p) \) fixed points.

Proof. First, we can directly apply Jiang’s smooth Wecken theorem to \(\tilde{f} \). This gives us a smooth map \(\tilde{h} : B \to B \) that is smoothly homotopic to \(f \), by a smooth homotopy \(\alpha_t \), where \(\alpha_0 = \tilde{f} \) and \(\alpha_1 = p \), such that \(h \) has \(N(f) \) fixed points. By the smooth covering homotopy theorem \([2]\), there exists a smooth lift \(\overline{\alpha_t} \circ p : E \to E \) of \(\alpha_t \circ p \) since \((f, \tilde{f})\) is a smooth fiber preserving map of \(p \). Let \(h = \overline{\alpha_1} \circ p ; \) then \((h, \tilde{h})\) is a fiber preserving map of \(p \) that is smoothly fiber homotopic to \((f, \tilde{f})\).

Suppose \(b \) is a fixed point of \(\tilde{h} \) and that \(b \) is contained in some local coordinate chart \(V \) that has the local trivialization property. Since \(\tilde{h} \) has isolated fixed points, we can find an open neighborhood \(U \) of \(b \) where \(U \subseteq \tilde{h}^{-1}(V) \cap V \) and \(U \) has no additional fixed points of \(\tilde{h} \). We may assume that \(U \) is the interior of a geodesic ball with center \(b \) and radius 1 (we can always rescale). This implies that any two points in \(U \) can be joined by a unique arc length geodesic that is contained in \(U \).

Let \(h_b = \tilde{h}|_{p^{-1}(b)} : p^{-1}(b) \to p^{-1}(b) \). Applying the smooth Wecken theorem to \(h_b \), there exists a smooth map \(g_b \) smoothly homotopic to \(h_b \), by a homotopy we will call \(h_t \), where \(h_0 = g_b \) and \(h_1 = h_b \), such that \(g_b \) has \(N(h_b) \) fixed points. Since \(h_b \) is homotopic to \(f_b \) by the homotopy \(h_t \) above, it follows that \(g_b \) has \(N(f_b) \) fixed points. The local triviality conditions on \(U \) and \(V \) give us a homotopy

\[
\phi_U^{-1} \circ h \circ \phi_{U} : \{b\} \times F \to \{b\} \times F
\]
such that

\[
\phi_U^{-1} \circ h \circ \phi_{U}(y) = (\tilde{h}(b, y)),
\]

where \(\tilde{h}_t \) is a smooth homotopy on \(\{b\} \times F \). Let \(\tilde{h}_0(b, y) = \tilde{g}(b, y) \) and \(\tilde{h}_1(b, y) = \tilde{h}(b, y) \).

Since \((h, \tilde{h})\) is a fiber preserving map of \(p \), we have that \(\phi_U^{-1} \circ h \circ \phi_U : U \times F \to V \times F \) is of the form

\[
\phi_U^{-1} \circ h \circ \phi_U(x, y) = (\tilde{h}(x, y)),
\]

where \(\tilde{h} \) is a smooth map on \(U \times F \). For each \(x \in U \), there exists a unique arc length parameter geodesic \(\gamma_x : I \to U \), where \(\gamma_x(0) = b \), \(\gamma_x(1) = x \), \(\gamma_x \) depends smoothly on its endpoints and varies continuously with \(x \). Define \(k_t : U \times F \to F \) by \(k_t(x, y) = \tilde{h}(\gamma_x(t), y) \). Then \(k_t \) is a continuous homotopy, where \(k_0(x, y) = \tilde{h}(b, y) \) and \(k_1(x, y) = \tilde{h}(x, y) \). We can now define a homotopy \(c_t : U \times F \to F \) as follows:

\[
c_t(x, y) = \begin{cases}
\tilde{h}_2t(b, y), & \text{if } 0 \leq t \leq \frac{1}{2}, \\
k_{2t-1}(x, y), & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases}
\]
By standard smooth approximation techniques, c_t can be approximated by a smooth homotopy \tilde{c}_t with $\tilde{c}_0(x, y) = \tilde{g}(b, y)$ and $\tilde{c}_1(x, y) = \tilde{h}(x, y)$.

Consider a smooth monotone increasing function $B : I \to I$, such that B equals 0 on the interval $[0, \frac{1}{2}]$ and B equals 1 on the interval $[\frac{3}{4}, 1]$. Define $\tilde{l}_t : U \times F \to V \times F$ by

$$\tilde{l}_t(x, y) = (\tilde{h}(x), \tilde{c}_{t+(1-t)B(\text{dist}(b, x))}(x, y)),$$

where $\text{dist}(b, x)$ is the length of the unique minimal geodesic γ_t joining b to x. If $\phi_U^{-1}(z) = (x, y)$, we use \tilde{l}_t to define a smooth homotopy $l_t : p^{-1}(U) \to p^{-1}(V)$ by

$$l_t(z) = \phi_V \circ \tilde{l}_t \circ \phi_U^{-1}(z) = \phi_V \circ \tilde{l}_t(x, y) = \phi_V(\tilde{h}(x), \tilde{c}_{t+(1-t)B(\text{dist}(b, x))}(x, y)).$$

Consider

$$l_0(z) = \phi_V(\tilde{h}(x), \tilde{c}_{B(\text{dist}(b, x))}(x, y)).$$

When $z \in p^{-1}(b)$, then $l_0(z) = g_b(z)$. If $\text{dist}(b, x) \geq \frac{1}{4}$, then $l_0(z) = h(z)$. Note that l_t is a homotopy ending at $h(z)$.

Extend l_t to a smooth fiber preserving homotopy, which we will call L_t, defined on all of E by taking defining L_t to be h outside of the neighborhood of $p^{-1}(b)$.

Define g to be L_0. Now g is a smooth self map of E that is smoothly homotopic to h, where $g|_{p^{-1}(b)} = g_b$ and $g = h$ outside a neighborhood of $p^{-1}(b)$. The map g has $N(f_b)$ fixed points on the fiber $p^{-1}(b)$ over the fixed point b. Repeated application of this process produces a map g that has $N_{t}(f, p) = \sum_{x \in \xi} N(f_x)$ fixed points, where ξ is any set of representatives for the essential fixed point classes of f. □

References

Department of Mathematics, University of California, Los Angeles, California 90095-1555

Current address: 1111 Laveta Terrace, Los Angeles, California 90026

E-mail address: cathylee@math.ucla.edu