ON THE COEFFICIENTS OF HILBERT QUASIPOLYNOMIALS

WINFRIED BRUNS AND BOGDAN ICHIM

(Communicated by Bernd Ulrich)

Abstract. The Hilbert function of a module over a positively graded algebra is of quasi-polynomial type (Hilbert–Serre). We derive an upper bound for its grade, i.e. the index from which on its coefficients are constant. As an application, we give a purely algebraic proof of an old combinatorial result (due to Ehrhart, McMullen and Stanley).

1. Hilbert quasipolynomials

Let K be a field, and R a positively graded K-algebra, that is, $R = \bigoplus_{i \geq 0} R_i$ where $R_0 = K$ and R is finitely generated over K. We do not assume R to be generated in degree 1—the generators may be of arbitrarily high degree. The following theorem of Hilbert–Serre describes the Hilbert functions of finitely generated graded R-modules M.

Theorem 1. Let $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a finitely generated graded R-module of dimension d, $H(M, n) : \mathbb{Z} \to \mathbb{Z}$ the associated Hilbert function, and suppose that r_1, \ldots, r_d is a homogeneous system of parameters for M.

Then there is a quasi-polynomial Q_M of degree $d - 1$, such that $H(M, n) = Q_M(n)$ for $n \gg 0$. Moreover, the period of Q_M divides $\text{lcm}(\text{deg } r_1, \ldots, \text{deg } r_d)$.

The terminology concerning quasipolynomials is explained as follows: a function $Q : \mathbb{Z} \to \mathbb{C}$ is called a quasipolynomial of degree u if

$$Q(n) = a_u(n)n^u + a_{u-1}(n)n^{u-1} + \ldots + a_1(n)n + a_0(n),$$

where $a_i : \mathbb{Z} \to \mathbb{C}$ is a periodic function for $i = 0, \ldots, u$, and $a_u \neq 0$. The period of Q is the smallest positive integer π such that

$$a_i(n + m\pi) = a_i(n)$$

for all $n, m \in \mathbb{Z}$ and $i = 0, \ldots, u$.

For the reader's convenience, we include a short proof the Hilbert–Serre theorem, or rather its reduction to the classical theorem of Hilbert. By definition of homogeneous system of parameters, M is a finitely generated module over $K[r_1, \ldots, r_d]$ (which is isomorphic to a polynomial ring over K). Therefore we may assume that $R = K[r_1, \ldots, r_d]$. Let S be the subalgebra of R generated by its homogeneous elements of degree $p = \text{lcm}(\text{deg } r_1, \ldots, \text{deg } r_d)$. Then it is not hard to see that R is a finitely generated S-module. Therefore M is a finitely generated S-module,
too, and \(\dim_S M = \dim_R M \). As a last reduction step, we can replace \(R \) by \(S \) and assume that \(R \) is generated by its elements of degree \(p \).

Then we have the decomposition

\[
M = M^0 \oplus \ldots \oplus M^{p-1}, \quad M^k = \bigoplus_{i \equiv_k (p)} M_i,
\]

into finitely generated \(R \)-modules, and \(\dim M = \max_k \dim M^k \).

Let us consider a single module \(M_k \). Then we can normalize the degrees in \(R \) dividing them by \(p \) and re-grade \(M_k \) by giving degree \((i - k)/p\) to the elements of its degree \(i \) component in the original grading, \(i \equiv_k (p) \). By Hilbert’s theorem, the Hilbert function of \(M_k \) re-graded is given by a true polynomial \(P_k(n) \) for \(n \gg 0 \).

Returning to \(M \) we obtain

\[
H(M, n) = P_k((n - k)/p), \quad n \equiv_k (p), \quad n \gg 0,
\]

and this proves the theorem.

It is clear that any improvement of the theorem depends on the “coherence” of the modules \(M^k \). The reduction in the proof above forgets the original module structure to a large extent. Clearly, in the extreme case in which \(R \) is generated by its degree \(p \) elements, \(M \) is just a direct sum of the independent modules \(M^k \). But if the \(M^k \) are sufficiently related, then one can say more on \(Q_M \).

2. The grade of Hilbert quasi-polynomials

It is a natural question to ask how close \(Q_M \) is to being a true polynomial. The next theorem, which is the main result of this paper, provides an answer. Following Ehrhart \[2\], we let the grade of \(Q \) denote the smallest integer \(\delta \geq -1 \) such that \(a_i(\lambda) \) is constant for all \(i > \delta \).

Theorem 2. Let \(M = \bigoplus_{i \in \mathbb{Z}} M_i \) be a finitely generated graded \(R \)-module of dimension \(d \), and

\[
Q(n) = a_{d-1}(n)n^{d-1} + a_{d-2}(n)n^{d-2} + \ldots + a_1(n)n + a_0(n)
\]

its Hilbert quasi-polynomial with period \(\pi \). Let \(I \) be the ideal of \(R \) generated by all homogeneous elements \(x \) of \(R \) such that \(\gcd(\deg x, \pi) = 1 \). Then

\[
\text{grade } Q < \dim M/IM.
\]

The theorem will be proved by an induction based on the following lemma, in which, as usual, \((0 : x)_M = \{u \in M : xu = 0\}\).

Lemma 3. With the notation of the theorem, if \(\dim M/IM < \dim M \), then there is a homogeneous \(x \in I \) with \(\gcd(\deg x, \pi) = 1 \), such that

(a) \(\dim M/xM = \dim M - 1 \),
(b) \(\dim(0 : x)_M \leq \dim M - 1 \).

Proof. Let \(D(M) = \{p \in V(M), \dim A/p = \dim M\} = \{p_1, \ldots, p_r\} \). Clearly \(I \nsubseteq p_i \) for \(i = 1, \ldots, r \). By prime avoidance, we conclude that \(I \nsubseteq p_1 \cup \ldots \cup p_r \). By induction on \(r \), we show that

\[
S = \{x \in I, \; x \text{ homogeneous, } \gcd(\deg x, \pi) = 1\} \nsubseteq \bigcup_{i=1}^r p_i.
\]
This is clear for \(r = 1 \). For \(1 \leq j \leq r \), we may assume by induction that

\[
S \not\subseteq \bigcup_{i=1, i \neq j}^{r} p_i.
\]

Assume that \(S \subset p_1 \cup \cdots \cup p_r \). Then for each \(j = 1, \ldots, r \) there is \(x_j \in S \) such that

\[
x_j \in p_j \setminus \bigcup_{i=1, i \neq j}^{r} p_i.
\]

Let \(\deg x_1 = \alpha \) and \(\deg x_2 \ldots x_r = \beta \). Then \(x = x_1^{\text{lcm}(\alpha, \beta)/\alpha} + (x_2 \ldots x_r)^{\text{lcm}(\alpha, \beta)/\beta} \in S \), since it is homogeneous, and \(\gcd(\text{lcm}(\alpha, \beta), \pi) = 1 \). Now

\[
x_1 \in p_1 \setminus \bigcup_{i=2}^{r} p_i \quad \text{and} \quad x_2 \ldots x_r \in \bigcap_{i=2}^{r} p_i \setminus p_1 \quad \text{implies} \quad x \not\in \bigcup_{i=1}^{r} p_i,
\]

a contradiction.

Let \(x \in S \setminus (p_1 \cup \ldots \cup p_r) \). Then \(\dim M/xM = \dim M - 1 \). Moreover every prime ideal in the support of \((0 : x)_M\) is in the support of \(M/xM \). Thus \(\dim(0 : x)_M \leq \dim M - 1 \).

Proof of Theorem \(\Box \) We prove by induction on \(\dim M = d \) that \(\dim M/IM \leq \gamma \) implies \(a_j(\omega) \) constant for all \(j \geq \gamma \). This is clear if \(d \leq \gamma \) (then \(j \geq \gamma \) implies \(a_j(\omega) = 0 \)), so we may assume \(d > \gamma \). Let \(x \) be as in the lemma, and \(g = \deg x \).

Set \(M' = M/xM \) and \(M'' = (0 : x)_M \). Then \(M'/IM' \cong M/IM \) and certainly \(\dim M''/IM'' \leq \gamma \). Since \(\dim M' \), \(\dim M'' < \dim M \), we may assume by induction that \(H(M/xM, n) \) and \(H((0 : x)_M, n) \), \(n \gg 0 \), are quasipolynomials of grade \(< \gamma \).

The exact sequence

\[
0 \longrightarrow (0 : x)_M(-g) \longrightarrow M(-g) \xrightarrow{x} M \longrightarrow M/xM \longrightarrow 0
\]

gives the equation

\[
H(M, n) - H(M, n-g) = H(M/xM, n) - H((0 : x)_M, n-g).
\]

For a quasipolynomial \(Q \) it is easy to see that \(Q(n-g) \) has the same grade as \(Q \). Therefore the right-hand side in the previous equation is a quasipolynomial of grade \(< \gamma \) for \(n \gg 0 \), and so this holds for the left-hand side, too. So it remains only to apply the following lemma. \(\Box \)

Lemma 4. Let \(Q(n) = \sum a_k(n)n^k \) be a quasipolynomial. If \(Q(n) - Q(n-g) \) is of grade \(< \gamma \) for some \(g \) coprime to the period \(\pi \) of \(Q \), then \(\text{grade} \, Q < \gamma \).

Proof. Let \(u = \deg Q \) and let us first compare the leading coefficients. We can assume \(\gamma \leq u \). Then one has \(a_u(n) - a_u(n-g) = C \) for some constant \(C \) and all \(n \), and so \(a_u(n) - a_u(n-\pi g) = \pi C \). Since \(\pi \) is the period, we conclude that \(C = 0 \), and \(a_u(n) = a_u(n-g) \). But \(g \) is coprime to \(\pi \), and it follows that \(a_u \) is constant.

The descending induction being started, one argues as follows for the lower coefficients. Suppose that \(k \geq \gamma \). Then \(a_k(n) - a_k(n-g) \) is a polynomial in the coefficients \(a_j \) for \(j > k \) and \(g \). Since the higher coefficients are constant by induction, it follows that \(a_k(n) - a_k(n-g) \) is constant, too, and the rest of the argument is as above. \(\Box \)
3. An application to rational polytopes

In this section we shall give a purely algebraic proof of an old theorem, which was conjectured by Ehrhart (E, p. 53), and proved independently by McMullen (see [M]) and Stanley (S, Theorem 2.8).

Theorem 5. Let P be a d-dimensional rational convex polytope in \mathbb{R}^m, and let the Ehrhart quasi-polynomial of P be
\[
E_P(n) = a_d(n)n^d + a_{d-1}(n)n^{d-1} + \ldots + a_1(n)n + a_0(n).
\]
Suppose that for some δ the affine span of every δ-dimensional face of P contains a point with integer coordinates. Then $\text{grade } E_P < \delta$.

Proof. We choose a field K and let R be the Ehrhart ring of P. It is the vector subspace of $K[X_1^{\pm 1}, \ldots, X_m^{\pm 1}, T]$ spanned by all Laurent monomials $X^a T^n = X_1^{a_1} \ldots X_m^{a_m} T^n$ where $a = (a_1, \ldots, a_m) \in nP$, $n \in \mathbb{Z}$, $n \geq 0$. By Gordan’s lemma it follows easily that R is a finitely generated, positively graded K-algebra, where we use the exponent of T as the degree of a monomial. The Ehrhart function of P is just the Hilbert function of R. (See Chapter 6 of [BH] for more information.)

Let π be the period of E_P, and F a δ-dimensional face of P. Since the affine span of F contains a point with integer coordinates, nF contains a point with integer coordinates for all $n \gg 0$. We chose n big enough so that nF contains a point m_F with integer coordinates for every δ-dimensional face F, and $\gcd(n, \pi) = 1$.

Now let $J \subset R$ be the ideal generated by the monomials $X^{m_F} T^n$. If $\dim R/J \leq \delta$, then we are done by Theorem 2 because the ideal I in Theorem 2 contains J.

Since J is a monomial ideal, $\text{Ass}_R R/J$ consists of monomial prime ideals. In particular, $\text{Min}_R R/J$ consists of monomial prime ideals. By theorem 6.1.7 of [BH], for each $p \in \text{Min}_R R/J$, there is a face G_p of P, such that p is generated by all monomials outside the cone associated with G_p. One has $\dim R/p = \dim G_p + 1$. Since $J \subset p$, it follows that $\dim G_p \leq \delta - 1$. So $\dim R/J = \max\{\dim R/p, p \in \text{Min}_R R/J\} \leq (\delta - 1) + 1 = \delta$. □

References

