EXPONENTIAL GROWTH OF LIE ALGEBRAS
OF FINITE GLOBAL DIMENSION

YVES FELIX, STEVE HALPERIN, AND JEAN-CLAUDE THOMAS

(Communicated by Paul Goerss)

Abstract. Let L be a connected finite type graded Lie algebra. If $\dim L = \infty$ and $\text{gldim } L < \infty$, then $\log \text{index } L = \alpha > 0$. If, moreover, $\alpha < \infty$, then for some d, $\sum_{i=1}^{d-1} \dim L_{k+i} = e^{k\alpha_k}$, where $\alpha_k \to \log \text{index } L$ as $k \to \infty$.

We work with graded vector spaces V over a field k of characteristic $\neq 2$ and denote by $V(p,q)$ the subspace $\{ V_i \mid p < i < q \}$. The logarithmic index of any graded vector space V is defined by

$$\log \text{index } V = \limsup_k \frac{\log \dim V_k}{k},$$

and an infinite sequence (q_i) is a quasi-geometric growth sequence for V if for some fixed n, $q_i < q_{i+1} \leq nq_i$, for all i, and if

$$\frac{\log \dim V_{q_i}}{q_i} \to \log \text{index } V.$$

Now consider graded Lie algebras as defined in [4]; in particular we suppose $[x, [x, x]] = 0$, $x \in L_{\text{odd}}$, if char $k = 3$. L is connected finite type (a cft graded Lie algebra) if $L = \{ L_i \}_{i \geq 1}$ and each L_i is finite dimensional. The global dimension (gldim L) and depth of a cft graded Lie algebra, L, are defined, respectively, by

$$\text{gldim } L = \max \{ k \mid \text{Ext}^k_{UL}(k,k) \neq 0 \}$$

and

$$\text{depth } L = \min \{ k \mid \text{Ext}^k_{UL}(k,UL) \neq 0 \}.$$

It is easy to see that depth $L \leq \text{gl dim } L$.

Our main result reads:

Theorem. Suppose L is a cft graded Lie algebra and $\dim L = \infty$. If $\text{gldim } L < \infty$, then $\log \text{index } L > 0$. If, moreover, $\log \text{index } L < \infty$, then for some d,

$$\sum_{i=1}^{d-1} \dim L_{k+i} = e^{k\alpha_k}, \text{ where } \alpha_k \to \log \text{index } L, \text{ as } k \to \infty.$$
Remark. Theorem 3 of [5] establishes the same conclusion when the hypothesis
\[\text{gldim } L < \infty \]
is weakened to depth \(L < \infty \), but certain additional growth conditions
on \(L \) are assumed.

Now suppose \(X \) is a simply connected topological space with each \(H_i(X; \mathbb{Q}) \)
finite dimensional. Then the loop space homology, \(H_*(\Omega X; \mathbb{Q}) \), is the universal
enveloping algebra of a cft graded Lie algebra \(L_X \), isomorphic to \(\pi_*(\Omega X) \otimes \mathbb{Q} \).

Corollary. If \(\dim L_X = \infty \), \(\text{gldim } L_X < \infty \) and \(\log \text{index } L_X < \infty \), then for some \(d \),

\[\sum_{i=1}^{d-1} \dim \pi_{k+i}(X) \otimes \mathbb{Q} = e^{k \alpha_k}, \]

where \(\alpha_k \to \log \text{index } L_X \) as \(k \to \infty \). In particular \(\sum_{i=1}^{d-1} \dim \pi_{k+i}(X) \otimes \mathbb{Q} \) grows
exponentially in \(k \).

Proof of the Theorem. First we establish

Lemma 1. An infinite-dimensional cft graded Lie algebra \(L \) of finite global dimension
has a quasi-geometric growth sequence.

Proof. We use the same argument as in the proof of Theorem 2 in [5]: Put \(m = \text{gldim } L \), \(a = \left(\frac{1}{2(m+1)} \right)^{m+1} \) and \(\alpha = \log \text{index } L \).

The Cartan-Eilenberg-Serre cochain complex \(C^*(L) \) is in fact a Sullivan algebra
([3]) of the form \(\bigwedge \langle sL \rangle^\# \), \((sL)^\# \) denoting the dual of the suspension of \(L \) and \(\bigwedge V \)
denoting the free graded commutative algebra on \(V \). The differential in \(\bigwedge (sL)^\# \)
increases the length of word gradation by 1 and so gives a second gradation \(H^p(\bigwedge sL)^\# \) in \(H(\bigwedge (sL)^\#) \). As shown in [1], \(\text{Ext}_{UL}^p(k, k) \cong H^p(\bigwedge sL)^\# \), and so our hypothesis implies \(H^p(\bigwedge sL)^\# = 0, \ p > m \).

Note that for each \(k \), \(C^*(L) \geq k \) is obtained from \(C^*(L) \) by dividing by the ideal
generated by elements in \((sL)^\# \) of degree \(\leq k \). Since \(\text{gldim } L \geq k \) it follows
that these quotient cochain complexes also satisfy \(H^p(\bigwedge sL)^\# = 0, \ p > m \). The argument
of [2], section 4, can therefore be applied verbatim to \(\bigwedge (sL)^\# \) (with cat \(\bigwedge X \leq m \) replaced by \(\text{gldim } L \leq m \)) to conclude that \(\alpha > 0 \).

The same argument in the proof of Theorem 2 in [5] now shows that each \(L \)
has a quasi-geometric growth sequence. Let \(n_i \) be an increasing sequence such that
\((\dim L_{n_i})^{\frac{1}{n_i}} \) converges to \(e^\alpha \). By starting the sequence at some \(n_j \) we may assume
\(\dim L_{n_i} > \frac{1}{a} \), for all \(i \). Thus the formula \((\dim L_{n_i})^{\frac{1}{n_i}} \geq (a \dim L_{n_i})^{\frac{1}{n_i}}, \ j < k \).

Hence interpolating the sequences \(n_i \) with the sequences \(q_j \) gives a quasi-geometric
growth sequence \((r_j) \).

We now revert to the proof of the Theorem. Since \(\text{gldim } L < \infty \) we may choose a
non-zero element \(x \in L \) of even degree \(d \). Let \(N \) be the sub-Lie algebra of elements
of degree \(> d \) that commute with \(x \). Then

\[\text{gldim } L \geq \text{gldim } (kx + N) = 1 + \text{gldim } N. \]

If \(\log \text{index } N = \log \text{index } L = \alpha \), then certainly \(\dim N = \infty \), and so \(N \)
satisfies the hypotheses of the Theorem. By induction on global dimension it satisfies the
conclusion. In particular, if \(\alpha < \infty \), then for some \(d \),
\[
\sum_{j=1}^{d-1} \dim N_{k+j} = e^{k \beta_k}
\]
with \(\beta_k \to \alpha \). Write
\[
\sum_{j=1}^{d-1} \dim L_{k+j} = e^{k \alpha_k}.
\]
Then \(\alpha_k \geq \beta_k \) and \(\lim sup \alpha_k = \alpha \) because \(\alpha = \log \text{dim} L \). Thus \(\alpha_k \to \alpha \), and the theorem holds in this case.

Lemma 2. There is a sequence of finitely generated sub-Lie algebras \(E(i) \subset L \) such that \(\log \text{dim} E(i) \to \alpha \).

Proof. Otherwise for some \(\varepsilon > 0 \) we have \(\log \text{dim} E \leq \alpha - \varepsilon \) for every finitely generated sub-Lie algebra \(E \subset L \). Construct an increasing sequence of finitely generated sub-Lie algebras, \(F(i) \), and increasing sequences \((k_i) \) and \((\ell_i) \), as follows. Set \(F(0) = 0 \), and if \(F(i) \) is constructed choose \(k_i \) and \(\ell_i \) so that
\[
(i) \quad \dim F(i)_{k} < e^{\ell_i(\alpha - \varepsilon/2)} , k \geq k_i ,
(ii) \quad \dim L_{\ell_i} \geq e^{\ell_i(\alpha - 1/i)} ,
(iii) \quad \ell_i > (m + 1)k_i .
\]
Then let \(F(i + 1) \) be the sub-Lie algebra generated by \(F(i) \) and \(L_{\ell_i} \).

Now let \(F = \bigcup_i F(i) \). Since \(\dim F_{\ell_i} \geq e^{\ell_i(\alpha - \frac{1}{4})} \) it follows that \(\log \text{dim} F = \alpha \). Moreover, because \(F \subset L \), \(\text{gldim} F \leq m \). Thus by Lemma 1 there is an infinite sequence \(q_j \) such that for all \(j \), \(q_j < q_{j+1} \leq (m + 1)q_j \) and \(\dim F_{q_j} \geq e^{q_j(\alpha - \varepsilon/2)} \). In particular we may choose \(i \) and \(j \) so that \(q_j \leq k_i < q_{j+1} \). But then \(q_{j+1} \leq (m + 1)q_j \leq (m + 1)k_i < \ell_i \), and it follows that \(F_{q_{j+1}} = F(q_{j+1}) \). This implies that \(\dim F_{q_{j+1}} < e^{q_{j+1}(\alpha - \varepsilon/2)} \), a contradiction.

Finally, we complete the proof of the theorem. It remains to consider the case \(\log \text{dim} N < \log \text{dim} L \). Let \(E(i) \subset L \) be finitely generated sub-Lie algebras such that \(\log \text{dim} E(i) \to \log \text{dim} L \). Moreover, \(\text{gldim} E(i) \leq m \) and, according to Lemma 1, each \(E(i) \) has a quasi-geometric growth sequence. Since \(E(i) \) is finitely generated, Theorem 3 of [5] applies and states that for some \(d_i \), \(\frac{\log \text{dim} E(i)(k,k+d_i)}{k} \) converges to \(\log \text{dim} E(i) \).

Fix \(\varepsilon > 0 \) and choose \(i \) so that \(\log \text{dim} E(i) \geq \alpha - \varepsilon/4 \). Then choose \(k_0 \) so that
\[
\frac{\log \text{dim} E(i)(k,k+d_i)}{k} \geq \alpha - \varepsilon/3 , \quad k \geq k_0 ,
\]
This implies that \(k_0 \) extends to an infinite sequence \((k_\ell) \) such that \(k_\ell < k_{\ell+1} < k_\ell + d_i \) and such that
\[
\frac{\log \text{dim} L_{k_\ell}}{k_\ell} \geq \alpha - \varepsilon/2 , \quad \ell \geq 0 .
\]
On the other hand, since \(\log \text{dim} N < \log \text{dim} L \) we may assume (for \(k_0 \) sufficiently large and \(\varepsilon \) sufficiently small) that
\[
\sum_{j \leq d_i/k_\ell} \dim N_{k_\ell+jd} \leq \frac{1}{2} \dim L_{k_\ell} , \quad \text{for all } \ell .
\]
Since $N = (\ker \text{ad} x)_{>d}$ we have

$$\dim L_{k\ell + pd} \geq \dim L_{k\ell} - \sum_{j=0}^{p-1} \dim N_{k\ell + jd} \geq \frac{1}{2} \dim L_{k\ell}, \quad p \leq d_i/d.$$

It follows that for $p \leq d_i/d$ and $k\ell$ sufficiently large

$$\log \dim L_{k\ell + pd} \geq \frac{\log \frac{1}{2} + \log \dim L_{k\ell}}{k\ell} \geq \frac{k\ell}{k\ell + pd} \geq \alpha - \varepsilon.$$

This establishes the Theorem. \qed

References

Institut Mathématique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348, Louvain-La-Neuve, Belgium

Department of Mathematics, University of Maryland, College Park, Maryland 20742-3281

Faculté des Sciences, Université d’Angers, 49045 Bd Lavoisier, Angers, France