A new proof and generalizations of Gearhart’s theorem
HTML articles powered by AMS MathViewer
- by Vu Quoc Phong PDF
- Proc. Amer. Math. Soc. 135 (2007), 2065-2072 Request permission
Abstract:
Let $H$ be a Hilbert space, let $AP(\textbf {R},H)$ be the space of almost periodic functions from $\textbf {R}$ to $H$, and let $A$ be a closed densely defined linear operator on $H$. For a closed subset $\Lambda \subset \textbf {R}$, let $M(\Lambda )$ be the subspace of $AP(\textbf {R},H)$ consisting of functions with spectrum contained in $\Lambda$. We prove that the following properties are equivalent: (i) for every function $f\in M(\Lambda )$ there exists a unique mild solution $u\in M(\Lambda )$ of equation $u’(t)=Au(t)+f(t)$; (ii) $i\Lambda \subset \rho (A)$ and $\sup _{\lambda \in \Lambda }\|(i\lambda -A)^{-1}\|<\infty$. The case $\Lambda =\{2\pi k: k=0,\pm 1,\pm 2,...\}$ yields a new proof of the well-known Gearhart’s spectral mapping theorem.References
- Wolfgang Arendt, Frank Räbiger, and Ahmed Sourour, Spectral properties of the operator equation $AX+XB=Y$, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 178, 133–149. MR 1280689, DOI 10.1093/qmath/45.2.133
- Larry Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc. 236 (1978), 385–394. MR 461206, DOI 10.1090/S0002-9947-1978-0461206-1
- I. Herbst, The spectrum of Hilbert space semigroups, J. Operator Theory 10 (1983), no. 1, 87–94. MR 715559
- James S. Howland, On a theorem of Gearhart, Integral Equations Operator Theory 7 (1984), no. 1, 138–142. MR 802373, DOI 10.1007/BF01204917
- B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, Cambridge-New York, 1982. Translated from the Russian by L. W. Longdon. MR 690064
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- Jan Prüss, On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 847–857. MR 743749, DOI 10.1090/S0002-9947-1984-0743749-9
- Quoc Phong Vu and E. Schüler, The operator equation $AX-XB=C$, admissibility, and asymptotic behavior of differential equations, J. Differential Equations 145 (1998), no. 2, 394–419. MR 1621042, DOI 10.1006/jdeq.1998.3418
Additional Information
- Vu Quoc Phong
- Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701
- Email: qvu@math.ohiou.edu
- Received by editor(s): December 29, 2005
- Received by editor(s) in revised form: March 2, 2006
- Published electronically: February 2, 2007
- Communicated by: Carmen C. Chicone
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2065-2072
- MSC (2000): Primary 47D06, 35B40
- DOI: https://doi.org/10.1090/S0002-9939-07-08691-1
- MathSciNet review: 2299482