Maharam algebras and Cohen reals
HTML articles powered by AMS MathViewer
- by Ilijas Farah and Boban Veličković
- Proc. Amer. Math. Soc. 135 (2007), 2283-2290
- DOI: https://doi.org/10.1090/S0002-9939-07-08759-X
- Published electronically: February 2, 2007
- PDF | Request permission
Abstract:
We show that the product of any two nonatomic Maharam algebras adds a Cohen real. As a corollary of this and a result of Shelah (1994) we obtain that the product of any two nonatomic ccc Souslin forcing notions adds a Cohen real.References
- Uri Abraham and Stevo Todorčević, Partition properties of $\omega _1$ compatible with CH, Fund. Math. 152 (1997), no. 2, 165–181. MR 1441232, DOI 10.4064/fm-152-2-165-181
- B. Balcar, T. Jech, and T. Pazák, Complete CCC Boolean algebras, the order sequential topology, and a problem of von Neumann, Bull. London Math. Soc. 37 (2005), no. 6, 885–898. MR 2186722, DOI 10.1112/S0024609305004807
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295, DOI 10.1201/9781439863466
- Jens Peter Reus Christensen, Some results with relation to the control measure problem, Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977) Lecture Notes in Math., vol. 645, Springer, Berlin-New York, 1978, pp. 27–34. MR 502425
- Ilijas Farah and Jindřich Zapletal, Between Maharam’s and von Neumann’s problems, Math. Res. Lett. 11 (2004), no. 5-6, 673–684. MR 2106234, DOI 10.4310/MRL.2004.v11.n5.a10
- D.H. Fremlin, Measure theory, vol. 3, Torres–Fremlin, 2002.
- —, Maharam algebras, preprint, University of Essex, available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm, 2004.
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- Nigel Kalton, The Maharam problem, Séminaire d’Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie, vol. 94, Univ. Paris VI, Paris, 1989, pp. Exp. No. 18, 13. MR 1107322
- N. J. Kalton and James W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278 (1983), no. 2, 803–816. MR 701524, DOI 10.1090/S0002-9947-1983-0701524-4
- A. Louveau, Progrès récents sur le problème de Maharam d’après N.J. Kalton et J.W. Roberts, Séminaire d’initiation à l’analyse, 28ème année (G. Choquet et al., ed.), no. 20, 1983/84, pp. 01–08.
- Dorothy Maharam, An algebraic characterization of measure algebras, Ann. of Math. (2) 48 (1947), 154–167. MR 18718, DOI 10.2307/1969222
- J.W. Roberts, Maharam’s problem, Proceedings of the Orlitz memorial conference (P. Kranz and I. Labuda, eds.), 1991, unpublished.
- Saharon Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of subsets of reals modulo meagre or null, Israel J. Math. 88 (1994), no. 1-3, 159–174. MR 1303493, DOI 10.1007/BF02937509
- Otmar Spinas, Ramsey and freeness properties of Polish planes, Proc. London Math. Soc. (3) 82 (2001), no. 1, 31–63. MR 1794256, DOI 10.1112/S0024611500012740
- Michel Talagrand, Maharam’s problem, preprint, 31 pages, 2006.
- Stevo Todorčević, A dichotomy for P-ideals of countable sets, Fund. Math. 166 (2000), no. 3, 251–267. MR 1809418, DOI 10.4064/fm-166-3-251-267
- Boban Velickovic, The basis problem for CCC posets, Set theory (Piscataway, NJ, 1999) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 58, Amer. Math. Soc., Providence, RI, 2002, pp. 149–160. MR 1903857, DOI 10.1090/dimacs/058/12
- Boban Velickovic, ccc forcing and splitting reals, Israel J. Math. 147 (2005), 209–220. MR 2166361, DOI 10.1007/BF02785365
- Boban Velickovic and W. Hugh Woodin, Complexity of reals in inner models of set theory, Ann. Pure Appl. Logic 92 (1998), no. 3, 283–295. MR 1640916, DOI 10.1016/S0168-0072(98)00010-4
Bibliographic Information
- Ilijas Farah
- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3
- Address at time of publication: Matematički Institut, Kneza Mihaila 35, Beograd, Serbia and Montenegro
- MR Author ID: 350129
- Email: ifarah@mathstat.yorku.ca
- Boban Veličković
- Affiliation: Equipe de Logique Mathématique, UFR de Mathématiques (case 7012), Université Denis-Diderot Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
- Address at time of publication: Matematički Institut, Kneza Mihaila 35, Beograd, Serbia and Montenegro
- Email: boban@logique.jussieu.fr
- Received by editor(s): March 8, 2006
- Published electronically: February 2, 2007
- Additional Notes: These results were obtained in December 2004 while the authors were visiting the E. Schrödinger Institute in Vienna. We would like to thank the Institute for providing hospitality and a stimulating environment. The first author was partially supported by NSERC
- Communicated by: Julia Knight
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2283-2290
- MSC (2000): Primary 03Exx; Secondary 28Axx
- DOI: https://doi.org/10.1090/S0002-9939-07-08759-X
- MathSciNet review: 2299506