Periodic segment implies infinitely many periodic solutions
HTML articles powered by AMS MathViewer
- by Wacław Marzantowicz and Klaudiusz Wójcik
- Proc. Amer. Math. Soc. 135 (2007), 2637-2647
- DOI: https://doi.org/10.1090/S0002-9939-07-08750-3
- Published electronically: March 21, 2007
- PDF | Request permission
Abstract:
In this note we show that the existence of a periodic segment for a non-autonomous ODE with periodic coefficients implies the existence of infinitely many periodic solutions inside this segment provided that a sequence of Lefschetz numbers of iterations of an associated map is not constant. In the case when this sequence is bounded we have to impose a geometric condition on the segment to get solutions by use of symbolic dynamics.References
- I. K. Babienko, S. A. Bogatyi, Behaviour of the index of periodic points under iterations of mapping. Izv.-Akad.-Nauk-SSSR-Ser.-Mat., 55 No. 1, (1991), 3-31.
- A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983), no. 3, 419–435. MR 724012, DOI 10.1007/BF01394243
- Grzegorz Graff, Minimal periods of maps of rational exterior spaces, Fund. Math. 163 (2000), no. 2, 99–115. MR 1752098, DOI 10.4064/fm-163-2-99-115
- Jerzy Jezierski and Wacław Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications, vol. 3, Springer, Dordrecht, 2006. MR 2189944
- Wacław Marzantowicz and Piotr Maciej Przygodzki, Finding periodic points of a map by use of a $k$-adic expansion, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 495–514. MR 1696325, DOI 10.3934/dcds.1999.5.495
- Leszek Pieniążek and Klaudiusz Wójcik, Complicated dynamics in nonautonomous ODEs, Univ. Iagel. Acta Math. 41 (2003), 163–179. MR 2084760
- M. Shub and D. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology 13 (1974), 189–191. MR 350782, DOI 10.1016/0040-9383(74)90009-3
- Roman Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. 22 (1994), no. 6, 707–737. MR 1270166, DOI 10.1016/0362-546X(94)90223-2
- Roman Srzednicki, Ważewski method and Conley index, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004, pp. 591–684. MR 2166495
- Roman Srzednicki and Klaudiusz Wójcik, A geometric method for detecting chaotic dynamics, J. Differential Equations 135 (1997), no. 1, 66–82. MR 1434915, DOI 10.1006/jdeq.1996.3222
- Roman Srzednicki, Klaudiusz Wójcik, and Piotr Zgliczyński, Fixed point results based on the Ważewski method, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, pp. 905–943. MR 2171125, DOI 10.1007/1-4020-3222-6_{2}3
- Zhi-Wei Sun, Combinatorial identities in dual sequences, European J. Combin. 24 (2003), no. 6, 709–718. MR 1995582, DOI 10.1016/S0195-6698(03)00062-3
- Herbert S. Wilf, generatingfunctionology, 2nd ed., Academic Press, Inc., Boston, MA, 1994. MR 1277813
- Klaudiusz Wójcik, On detecting periodic solutions and chaos in the time periodically forced ODEs, Nonlinear Anal. 45 (2001), no. 1, Ser. A: Theory Methods, 19–27. MR 1828064, DOI 10.1016/S0362-546X(99)00327-2
Bibliographic Information
- Wacław Marzantowicz
- Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz Universiy of Poznań, Umultowska 67, 61-614 Poznań, Poland
- Klaudiusz Wójcik
- Affiliation: PWSZ Nowy Sa̧cz, Institute of Pedagogy, Ul. Chruślicka 6, 33-300 Nowy Sa̧cz, Poland and Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
- Received by editor(s): January 2, 2006
- Received by editor(s) in revised form: April 7, 2006
- Published electronically: March 21, 2007
- Additional Notes: The first author’s research was supported by KBN grant 2P03A 03929
- Communicated by: Carmen C. Chicone
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2637-2647
- MSC (2000): Primary 54H25, 37B35, 37B55
- DOI: https://doi.org/10.1090/S0002-9939-07-08750-3
- MathSciNet review: 2302587