## A multilinear Phelps’ Lemma

HTML articles powered by AMS MathViewer

- by Richard Aron, Antonia Cardwell, Domingo García and Ignacio Zalduendo PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2549-2554 Request permission

## Abstract:

We prove a multilinear version of Phelps’ Lemma: if the zero sets of multilinear forms of norm one are ‘close’, then so are the multilinear forms.## References

- María D. Acosta, Francisco J. Aguirre, and Rafael Payá,
*There is no bilinear Bishop-Phelps theorem*, Israel J. Math.**93**(1996), 221–227. MR**1380644**, DOI 10.1007/BF02761104 - Richard Aron, Larry Downey, and Manuel Maestre,
*Zero sets and linear dependence of multilinear forms*, Note Mat.**25**(2005/06), no. 1, 49–54. MR**2220451** - Errett Bishop and R. R. Phelps,
*A proof that every Banach space is subreflexive*, Bull. Amer. Math. Soc.**67**(1961), 97–98. MR**123174**, DOI 10.1090/S0002-9904-1961-10514-4 - Carlos Benítez, Yannis Sarantopoulos, and Andrew Tonge,
*Lower bounds for norms of products of polynomials*, Math. Proc. Cambridge Philos. Soc.**124**(1998), no. 3, 395–408. MR**1636556**, DOI 10.1017/S030500419800259X - Cardwell, A.
*A new proof of a Lemma by Phelps*, International Journal of Mathematics and Mathematical Sciences, Vol. 2006 (2006). - Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler,
*Functional analysis and infinite-dimensional geometry*, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR**1831176**, DOI 10.1007/978-1-4757-3480-5 - M. Fabian, V. Montesinos, and V. Zizler,
*A characterization of subspaces of weakly compactly generated Banach spaces*, J. London Math. Soc. (2)**69**(2004), no. 2, 457–464. MR**2040615**, DOI 10.1112/S0024610703005118 - R. R. Phelps,
*A representation theorem for bounded convex sets*, Proc. Amer. Math. Soc.**11**(1960), 976–983. MR**123172**, DOI 10.1090/S0002-9939-1960-0123172-X - Raymond A. Ryan and Barry Turett,
*Geometry of spaces of polynomials*, J. Math. Anal. Appl.**221**(1998), no. 2, 698–711. MR**1621703**, DOI 10.1006/jmaa.1998.5942

## Additional Information

**Richard Aron**- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- MR Author ID: 27325
- Email: aron@math.kent.edu
**Antonia Cardwell**- Affiliation: Mathematics Department, Millersville University, P.O. Box 1002, Millersville, Pennsylvania 17551-0302
- Email: Antonia.Cardwell@millersville.edu
**Domingo García**- Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Email: domingo.garcia@uv.es
**Ignacio Zalduendo**- Affiliation: Depto. de Matemática, Universidad Torcuato Di Tella, Miñones 2159/77 (C1428ATG), Buenos Aires, Argentina
- MR Author ID: 186385
- Email: nacho@utdt.edu
- Received by editor(s): February 9, 2006
- Received by editor(s) in revised form: April 11, 2006
- Published electronically: February 6, 2007
- Additional Notes: The first and third authors were partially supported by MEC and FEDER Project MTM2005-08210.

The fourth author was supported by a Fulbright Commission grant - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**135**(2007), 2549-2554 - MSC (2000): Primary 46B20; Secondary 47A07
- DOI: https://doi.org/10.1090/S0002-9939-07-08762-X
- MathSciNet review: 2302575