A multilinear Phelps’ Lemma
HTML articles powered by AMS MathViewer
- by Richard Aron, Antonia Cardwell, Domingo García and Ignacio Zalduendo
- Proc. Amer. Math. Soc. 135 (2007), 2549-2554
- DOI: https://doi.org/10.1090/S0002-9939-07-08762-X
- Published electronically: February 6, 2007
- PDF | Request permission
Abstract:
We prove a multilinear version of Phelps’ Lemma: if the zero sets of multilinear forms of norm one are ‘close’, then so are the multilinear forms.References
- María D. Acosta, Francisco J. Aguirre, and Rafael Payá, There is no bilinear Bishop-Phelps theorem, Israel J. Math. 93 (1996), 221–227. MR 1380644, DOI 10.1007/BF02761104
- Richard Aron, Larry Downey, and Manuel Maestre, Zero sets and linear dependence of multilinear forms, Note Mat. 25 (2005/06), no. 1, 49–54. MR 2220451
- Errett Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98. MR 123174, DOI 10.1090/S0002-9904-1961-10514-4
- Carlos Benítez, Yannis Sarantopoulos, and Andrew Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 395–408. MR 1636556, DOI 10.1017/S030500419800259X
- Cardwell, A. A new proof of a Lemma by Phelps, International Journal of Mathematics and Mathematical Sciences, Vol. 2006 (2006).
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Santalucía, Jan Pelant, and Václav Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001. MR 1831176, DOI 10.1007/978-1-4757-3480-5
- M. Fabian, V. Montesinos, and V. Zizler, A characterization of subspaces of weakly compactly generated Banach spaces, J. London Math. Soc. (2) 69 (2004), no. 2, 457–464. MR 2040615, DOI 10.1112/S0024610703005118
- R. R. Phelps, A representation theorem for bounded convex sets, Proc. Amer. Math. Soc. 11 (1960), 976–983. MR 123172, DOI 10.1090/S0002-9939-1960-0123172-X
- Raymond A. Ryan and Barry Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698–711. MR 1621703, DOI 10.1006/jmaa.1998.5942
Bibliographic Information
- Richard Aron
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- MR Author ID: 27325
- Email: aron@math.kent.edu
- Antonia Cardwell
- Affiliation: Mathematics Department, Millersville University, P.O. Box 1002, Millersville, Pennsylvania 17551-0302
- Email: Antonia.Cardwell@millersville.edu
- Domingo García
- Affiliation: Departamento de Análisis Matemático, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Email: domingo.garcia@uv.es
- Ignacio Zalduendo
- Affiliation: Depto. de Matemática, Universidad Torcuato Di Tella, Miñones 2159/77 (C1428ATG), Buenos Aires, Argentina
- MR Author ID: 186385
- Email: nacho@utdt.edu
- Received by editor(s): February 9, 2006
- Received by editor(s) in revised form: April 11, 2006
- Published electronically: February 6, 2007
- Additional Notes: The first and third authors were partially supported by MEC and FEDER Project MTM2005-08210.
The fourth author was supported by a Fulbright Commission grant - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2549-2554
- MSC (2000): Primary 46B20; Secondary 47A07
- DOI: https://doi.org/10.1090/S0002-9939-07-08762-X
- MathSciNet review: 2302575