## Lie derivations of $\mathcal J$-subspace lattice algebras

HTML articles powered by AMS MathViewer

- by Fangyan Lu PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2581-2590 Request permission

## Abstract:

We describe the structure of Lie derivations of $\mathcal J$-subspace lattice algebras. The results can apply to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras, respectively.## References

- J. Alaminos, M. Mathieu, and A. R. Villena,
*Symmetric amenability and Lie derivations*, Math. Proc. Cambridge Philos. Soc.**137**(2004), no. 2, 433–439. MR**2092069**, DOI 10.1017/S0305004104007637 - K. I. Beidar and M. A. Chebotar,
*On Lie derivations of Lie ideals of prime algebras*, Israel J. Math.**123**(2001), 131–148. MR**1835291**, DOI 10.1007/BF02784122 - Matej Brešar,
*Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings*, Trans. Amer. Math. Soc.**335**(1993), no. 2, 525–546. MR**1069746**, DOI 10.1090/S0002-9947-1993-1069746-X - Matej Brešar and Peter emrl,
*Mappings which preserve idempotents, local automorphisms, and local derivations*, Canad. J. Math.**45**(1993), no. 3, 483–496. MR**1222512**, DOI 10.4153/CJM-1993-025-4 - Wai-Shun Cheung,
*Lie derivations of triangular algebras*, Linear Multilinear Algebra**51**(2003), no. 3, 299–310. MR**1995661**, DOI 10.1080/0308108031000096993 - Kenneth R. Davidson,
*Nest algebras*, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR**972978** - Don Hadwin and Jiankui Li,
*Local derivations and local automorphisms*, J. Math. Anal. Appl.**290**(2004), no. 2, 702–714. MR**2033052**, DOI 10.1016/j.jmaa.2003.10.015 - Paul Richard Halmos,
*A Hilbert space problem book*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR**675952** - B. E. Johnson,
*Symmetric amenability and the nonexistence of Lie and Jordan derivations*, Math. Proc. Cambridge Philos. Soc.**120**(1996), no. 3, 455–473. MR**1388200**, DOI 10.1017/S0305004100075010 - B. E. Johnson,
*Local derivations on $C^*$-algebras are derivations*, Trans. Amer. Math. Soc.**353**(2001), no. 1, 313–325. MR**1783788**, DOI 10.1090/S0002-9947-00-02688-X - Richard V. Kadison,
*Local derivations*, J. Algebra**130**(1990), no. 2, 494–509. MR**1051316**, DOI 10.1016/0021-8693(90)90095-6 - A. Katavolos, M. S. Lambrou, and W. E. Longstaff,
*Pentagon subspace lattices on Banach spaces*, J. Operator Theory**46**(2001), no. 2, 355–380. MR**1870412** - M. S. Lambrou,
*Approximants, commutants and double commutants in normed algebras*, J. London Math. Soc. (2)**25**(1982), no. 3, 499–512. MR**657507**, DOI 10.1112/jlms/s2-25.3.499 - M. S. Lambrou,
*Automatic continuity and implementation of homomorphisms*, (manuscript). - M. S. Lambrou and W. E. Longstaff,
*Non-reflexive pentagon subspace lattices*, Studia Math.**125**(1997), no. 2, 187–199. MR**1455633**, DOI 10.4064/sm-125-2-187-199 - W. E. Longstaff,
*Strongly reflexive lattices*, J. London Math. Soc. (2)**11**(1975), no. 4, 491–498. MR**394233**, DOI 10.1112/jlms/s2-11.4.491 - W. E. Longstaff, J. B. Nation, and Oreste Panaia,
*Abstract reflexive sublattices and completely distributive collapsibility*, Bull. Austral. Math. Soc.**58**(1998), no. 2, 245–260. MR**1642047**, DOI 10.1017/S0004972700032226 - W. E. Longstaff and Oreste Panaia,
*$\scr J$-subspace lattices and subspace $\rm M$-bases*, Studia Math.**139**(2000), no. 3, 197–212. MR**1762581** - Fangyan Lu and Pengtong Li,
*Algebraic isomorphisms and Jordan derivations of $\scr J$-subspace lattice algebras*, Studia Math.**158**(2003), no. 3, 287–301. MR**2014303**, DOI 10.4064/sm158-3-7 - Fangyan Lu and Pengtong Li,
*Jordan isomorphisms of $\scr J$-subspace lattice algebras*, Linear Algebra Appl.**371**(2003), 255–264. MR**1997374**, DOI 10.1016/S0024-3795(03)00461-0 - Wallace S. Martindale III,
*Lie derivations of primitive rings*, Michigan Math. J.**11**(1964), 183–187. MR**166234** - Martin Mathieu and Armando R. Villena,
*The structure of Lie derivations on $C^\ast$-algebras*, J. Funct. Anal.**202**(2003), no. 2, 504–525. MR**1990536**, DOI 10.1016/S0022-1236(03)00077-6 - C. Robert Miers,
*Lie derivations of von Neumann algebras*, Duke Math. J.**40**(1973), 403–409. MR**315466** - O. Panaia,
*Quasi–spatiality of isomorphisms for certain classes of operator algebras*, Ph. D. dissertation, University of Western Australia, 1995. - Gordon A. Swain,
*Lie derivations of the skew elements of prime rings with involution*, J. Algebra**184**(1996), no. 2, 679–704. MR**1409235**, DOI 10.1006/jabr.1996.0281 - Gordon A. Swain and Philip S. Blau,
*Lie derivations in prime rings with involution*, Canad. Math. Bull.**42**(1999), no. 3, 401–411. MR**1703701**, DOI 10.4153/CMB-1999-047-6 - A. R. Villena,
*Lie derivations on Banach algebras*, J. Algebra**226**(2000), no. 1, 390–409. MR**1749896**, DOI 10.1006/jabr.1999.8193

## Additional Information

**Fangyan Lu**- Affiliation: Department of Mathematics, Suzhou University, Suzhou 215006, People’s Republic of China
- Email: fylu@suda.edu.cn
- Received by editor(s): October 14, 2005
- Received by editor(s) in revised form: April 25, 2006
- Published electronically: February 6, 2007
- Additional Notes: The author was supported by NNSFC (No. 10571054) and a grant (No. 04KJB110116) from the government of Jiangsu Province of China.
- Communicated by: Joseph A. Ball
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**135**(2007), 2581-2590 - MSC (2000): Primary 47L35; Secondary 17B40, 17B60
- DOI: https://doi.org/10.1090/S0002-9939-07-08767-9
- MathSciNet review: 2302579