Simplicial shellable spheres via combinatorial blowups
HTML articles powered by AMS MathViewer
- by Sonja Lj. Čukić and Emanuele Delucchi
- Proc. Amer. Math. Soc. 135 (2007), 2403-2414
- DOI: https://doi.org/10.1090/S0002-9939-07-08768-0
- Published electronically: April 10, 2007
- PDF | Request permission
Abstract:
The construction of the Bier sphere $\textrm {Bier}(K)$ for a simplicial complex $K$ is due to Bier (1992). Björner, Paffenholz, Sjöstrand and Ziegler (2005) generalize this construction to obtain a Bier poset $\textrm {Bier}(P,I)$ from any bounded poset $P$ and any proper ideal $I\subseteq P$. They show shellability of $\textrm {Bier}(P,I)$ for the case $P=B_n$, the boolean lattice, and thereby obtain ‘many shellable spheres’ in the sense of Kalai (1988). We put the Bier construction into the general framework of the theory of nested set complexes of Feichtner and Kozlov (2004). We obtain ‘more shellable spheres’ by proving the general statement that combinatorial blowups, hence stellar subdivisions, preserve shellability.References
- T. Bier, A remark on Alexander duality and the disjunct join, Preprint (1992).
- Anders Björner, Andreas Paffenholz, Jonas Sjöstrand, and Günter M. Ziegler, Bier spheres and posets, Discrete Comput. Geom. 34 (2005), no. 1, 71–86. MR 2140883, DOI 10.1007/s00454-004-1144-0
- Anders Björner and Michelle Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323–341. MR 690055, DOI 10.1090/S0002-9947-1983-0690055-6
- Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299–1327. MR 1333388, DOI 10.1090/S0002-9947-96-01534-6
- C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459–494. MR 1366622, DOI 10.1007/BF01589496
- E.M. Feichtner, De Concini-Procesi arrangement models - a discrete geometer’s point of view in: Combinatorial and Computational Geometry, J.E. Goodman, J. Pach, E. Welzl, eds; MSRI Publications 52, Cambridge University Press, 2005, 333–360.
- E.M. Feichtner, Complexes of trees and nested set complexes, to appear in Pacific J. Math. arXiv:math.CO/0409235 v2
- Eva Maria Feichtner and Irene Müller, On the topology of nested set complexes, Proc. Amer. Math. Soc. 133 (2005), no. 4, 999–1006. MR 2117200, DOI 10.1090/S0002-9939-04-07731-7
- Eva-Maria Feichtner and Dmitry N. Kozlov, Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10 (2004), no. 1, 37–60. MR 2061222, DOI 10.1007/s00029-004-0298-1
- Eva Maria Feichtner and Dmitry N. Kozlov, A desingularization of real differentiable actions of finite groups, Int. Math. Res. Not. 15 (2005), 881–898. MR 2147091, DOI 10.1155/IMRN.2005.881
- Eva Maria Feichtner and Bernd Sturmfels, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62 (2005), no. 4, 437–468. MR 2191630
- Gil Kalai, Many triangulated spheres, Discrete Comput. Geom. 3 (1988), no. 1, 1–14. MR 918176, DOI 10.1007/BF02187893
- Dmitry N. Kozlov, General lexicographic shellability and orbit arrangements, Ann. Comb. 1 (1997), no. 1, 67–90. MR 1474801, DOI 10.1007/BF02558464
- D.N. Kozlov, Simple homotopy types of Hom-complexes, neighborhood complexes, Lovász complexes, and atom crosscut complexes, to appear in Topology and its Applications, arXiv:math.AT/0503613
- Jiří Matoušek, Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003. Lectures on topological methods in combinatorics and geometry; Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723
- John Shareshian, On the shellability of the order complex of the subgroup lattice of a finite group, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2689–2703. MR 1828468, DOI 10.1090/S0002-9947-01-02730-1
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260, DOI 10.1017/CBO9780511805967
Bibliographic Information
- Sonja Lj. Čukić
- Affiliation: Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland
- Email: sonja@math.binghamton.edu
- Emanuele Delucchi
- Affiliation: Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
- Email: delucchi@mail.dm.unipi.it
- Received by editor(s): February 2, 2006
- Received by editor(s) in revised form: May 2, 2006
- Published electronically: April 10, 2007
- Additional Notes: Research partially supported by TH-Projekt 0-20268-05, and by the Swiss National Science Foundation, project PP002–106403/1
- Communicated by: Paul Goerss
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2403-2414
- MSC (2000): Primary 06A07, 55U10, 52B22
- DOI: https://doi.org/10.1090/S0002-9939-07-08768-0
- MathSciNet review: 2302561