## On the regularity of the Neumann problem for free surfaces with surface tension

HTML articles powered by AMS MathViewer

- by Walter Craig and Ana-Maria Matei PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2497-2504 Request permission

## Abstract:

In 1952 H. Lewy established that a hydrodynamic free surface which is at least $C^1$ in a neighborhood of a point $q$ situated on the free surface is automatically $C^{\omega }$, possibly in a smaller neighborhood of $q$. This local result is an example which preceeds the theory developed by D. Kinderlehrer, L. Nirenberg and J. Spruck (1977–79), proving that in many cases free surfaces cannot have an arbitrary regularity; in particular, there exist $k,\mu$ such that if the surface in question is $C^{k,\mu }$, then automatically is $C^{\omega }$. In this paper we extend their methods to Neumann type problems for free surfaces with surface tension.## References

- S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**125307**, DOI 10.1002/cpa.3160120405 - C. J. Amick, L. E. Fraenkel, and J. F. Toland,
*On the Stokes conjecture for the wave of extreme form*, Acta Math.**148**(1982), 193–214. MR**666110**, DOI 10.1007/BF02392728 - Walter Craig and Ana-Maria Matei,
*Sur la régularité des ondes progressives à la surface de l’eau*, Journées “Équations aux Dérivées Partielles”, Univ. Nantes, Nantes, 2003, pp. Exp. No. IV, 9 (French, with French summary). MR**2050590** - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443** - D. Kinderlehrer and L. Nirenberg,
*Regularity in free boundary problems*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**4**(1977), no. 2, 373–391. MR**440187** - D. Kinderlehrer, L. Nirenberg, and J. Spruck,
*Regularity in elliptic free boundary problems*, J. Analyse Math.**34**(1978), 86–119 (1979). MR**531272**, DOI 10.1007/BF02790009 - D. Kinderlehrer, L. Nirenberg, and J. Spruck,
*Regularity in elliptic free boundary problems. II. Equations of higher order*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**6**(1979), no. 4, 637–683. MR**563338** - Hans Lewy,
*A note on harmonic functions and a hydrodynamical application*, Proc. Amer. Math. Soc.**3**(1952), 111–113. MR**49399**, DOI 10.1090/S0002-9939-1952-0049399-9 - Ana-Maria Matei,
*The Neumann problem for free boundaries in two dimensions*, C. R. Math. Acad. Sci. Paris**335**(2002), no. 7, 597–602 (English, with English and French summaries). MR**1941301** - Charles B. Morrey Jr.,
*Multiple integrals in the calculus of variations*, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR**0202511**

## Additional Information

**Walter Craig**- Affiliation: Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
- Email: craig@math.mcmaster.ca
**Ana-Maria Matei**- Affiliation: Department of Mathematics and Computer Science, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, Louisiana 70118
- Email: amatei@loyno.edu
- Received by editor(s): October 4, 2005
- Received by editor(s) in revised form: March 20, 2006
- Published electronically: March 14, 2007
- Additional Notes: This research was supported in part by the Canada Research Chairs Program and the NSERC through grant # 238452-01.
- Communicated by: Michael I. Weinstein
- © Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**135**(2007), 2497-2504 - MSC (2000): Primary 35J65, 76B15
- DOI: https://doi.org/10.1090/S0002-9939-07-08776-X
- MathSciNet review: 2302570