A note on subgaussian estimates for linear functionals on convex bodies
HTML articles powered by AMS MathViewer
- by A. Giannopoulos, A. Pajor and G. Paouris
- Proc. Amer. Math. Soc. 135 (2007), 2599-2606
- DOI: https://doi.org/10.1090/S0002-9939-07-08778-3
- Published electronically: March 29, 2007
- PDF | Request permission
Abstract:
We give an alternative proof of a recent result of Klartag on the existence of almost subgaussian linear functionals on convex bodies. If $K$ is a convex body in ${\mathbb R}^n$ with volume one and center of mass at the origin, there exists $x\neq 0$ such that \[ |\{ y\in K: |\langle y,x\rangle |\geq t\|\langle \cdot ,x\rangle \|_1\}|\leq \exp (-ct^2/\log ^2(t+1))\] for all $t\geq 1$, where $c>0$ is an absolute constant. The proof is based on the study of the $L_q$–centroid bodies of $K$. Analogous results hold true for general log-concave measures.References
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- S. G. Bobkov and F. L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 53–69. MR 2083388, DOI 10.1007/978-3-540-36428-3_{6}
- Sergey G. Bobkov and Fedor L. Nazarov, Large deviations of typical linear functionals on a convex body with unconditional basis, Stochastic inequalities and applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 3–13. MR 2073422
- J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 127–137. MR 1122617, DOI 10.1007/BFb0089219
- J. Bourgain, On the isotropy-constant problem for “PSI-2”-bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 114–121. MR 2083391, DOI 10.1007/978-3-540-36428-3_{9}
- J. Bourgain, B. Klartag, and V. Milman, Symmetrization and isotropic constants of convex bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 101–115. MR 2087154, DOI 10.1007/978-3-540-44489-3_{1}0
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. (2006), to appear.
- B. Klartag, Uniform almost sub-gaussian estimates for linear functionals on convex sets, Preprint.
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- G. Paouris, $\Psi _2$-estimates for linear functionals on zonoids, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 211–222. MR 2083399, DOI 10.1007/978-3-540-36428-3_{1}7
- G. Paouris, On the $\psi _2$-behaviour of linear functionals on isotropic convex bodies, Studia Math. 168 (2005), no. 3, 285–299. MR 2146128, DOI 10.4064/sm168-3-7
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. (2006), to appear.
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
Bibliographic Information
- A. Giannopoulos
- Affiliation: Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece
- Email: apgiannop@math.uoa.gr
- A. Pajor
- Affiliation: Équipe d’Analyse et de Mathématiques Appliquées, Université de Marne-la-Vallée, Champs sur Marne, 77454, Marne-la-Vallée, Cedex 2, France
- Email: Alain.Pajor@univ-mlv.fr
- G. Paouris
- Affiliation: Équipe d’Analyse et de Mathématiques Appliquées, Université de Marne-la-Vallée, Champs sur Marne, 77454, Marne-la-Vallée, Cedex 2, France
- MR Author ID: 671202
- Email: grigoris_paouris@yahoo.co.uk
- Received by editor(s): April 20, 2006
- Published electronically: March 29, 2007
- Additional Notes: The project was co-funded by the European Social Fund and National Resources - (EPEAEK II) “Pythagoras II". The second named author would like to thank the Department of Mathematics of the University of Athens for the hospitality. The third named author was supported by a Marie Curie Intra-European Fellowship (EIF), Contract MEIF-CT-2005-025017.
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2599-2606
- MSC (2000): Primary 52A20; Secondary 46B07
- DOI: https://doi.org/10.1090/S0002-9939-07-08778-3
- MathSciNet review: 2302581