Matrix coefficients and coadjoint orbits of compact Lie groups
Authors:
A. H. Dooley and R. W. Raffoul
Journal:
Proc. Amer. Math. Soc. 135 (2007), 2567-2571
MSC (2000):
Primary 43A77, 22E99; Secondary 47Nxx
DOI:
https://doi.org/10.1090/S0002-9939-07-08781-3
Published electronically:
March 22, 2007
MathSciNet review:
2302577
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let
be a compact Lie group. We use Weyl functional calculus (Anderson, 1969) and symplectic convexity theorems to determine the support and singular support of the operator-valued Fourier transform of the product of the
-function and the pull-back of an arbitrary unitary irreducible representation of
to the Lie algebra, strengthening and generalizing the results of Cazzaniga, 1992. We obtain as a consequence a new demonstration of the Kirillov correspondence for compact Lie groups.
- 1. Robert F. V. Anderson, The Weyl functional calculus, J. Functional Analysis 4 (1969), 240–267. MR 0635128
- 2. D. Arnal and J. Ludwig, La convexité de l’application moment d’un groupe de Lie, J. Funct. Anal. 105 (1992), no. 2, 256–300 (French, with English summary). MR 1160080, https://doi.org/10.1016/0022-1236(92)90080-3
- 3. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1980.MR 0997295 (90c:58046)
- 4. F. Cazzaniga, Kirillov’s formula for noncentral functions on 𝑆𝑈(2), Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), no. 3, 233–242 (1993). MR 1249464
- 5. A. H. Dooley and N. J. Wildberger, Global character formulae for compact Lie groups, Trans. Amer. Math. Soc. 351 (1999), no. 2, 477–495. MR 1638234, https://doi.org/10.1090/S0002-9947-99-02406-X
- 6. V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 77 (1984), 533-546. MR 0759258 (86b:58042a)
- 7. Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 0084104, https://doi.org/10.2307/2372387
- 8. Brian Jefferies, The Weyl calculus for Hermitian matrices, Proc. Amer. Math. Soc. 124 (1996), no. 1, 121–128. MR 1301032, https://doi.org/10.1090/S0002-9939-96-03143-7
- 9. M. S. Khalgui, Caractères des groupes de Lie, J. Funct. Anal., 47 (1982), 64-77.MR 0663833 (84f:22020)
- 10. A. A. Kirillov, Characters of unitary representations of Lie groups, Funkcional. Anal. i Priložen 2 (1968), no. 2, 40–55 (Russian). MR 0236318
- 11. Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 0364552
- 12. Jean Jacques Loeb, Formule de Kirillov pour les groupes de Lie semi-simples compacts, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–75), Springer, Berlin, 1975, pp. 230–256. Lecture Notes in Math., Vol. 497 (French). MR 0407204
- 13. Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, De Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000. MR 1740617
- 14. Edward Nelson, Operants: A functional calculus for non-commuting operators, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 172–187. MR 0412857
- 15. L. Pukánszky, On the characters and the Plancherel formula of nilpotent groups, J. Functional Analysis 1 (1967), 255–280. MR 0228656
- 16. W. Rossmann, Kirillov's character formula for reductive Lie groups, Invent. Math., 48 (1978), 207-220. MR 0508985 (81g:22012)
- 17. Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46–91. MR 1645052, https://doi.org/10.1006/aima.1998.1739
- 18. N. J. Wildberger, The moment map of a Lie group representation, Trans. Amer. Math. Soc. 330 (1992), no. 1, 257–268. MR 1040046, https://doi.org/10.1090/S0002-9947-1992-1040046-6
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A77, 22E99, 47Nxx
Retrieve articles in all journals with MSC (2000): 43A77, 22E99, 47Nxx
Additional Information
A. H. Dooley
Affiliation:
School of Mathematics, University of New South Wales, Sydney NSW 2000, Australia
Email:
a.dooley@unsw.edu.au
R. W. Raffoul
Affiliation:
School of Mathematics, University of New South Wales, Sydney NSW 2000, Australia
Email:
raed@maths.unsw.edu.au
DOI:
https://doi.org/10.1090/S0002-9939-07-08781-3
Keywords:
Coadjoint orbits,
Lie groups,
matrix coefficients,
moment map,
Weyl functional calculus.
Received by editor(s):
April 18, 2006
Published electronically:
March 22, 2007
Additional Notes:
The authors gratefully acknowledge the support of the Australian Research Council.
Communicated by:
Jane M. Hawkins
Article copyright:
© Copyright 2007
American Mathematical Society


