EMBEDDINGS OF n-DIMENSIONAL SEPARABLE METRIC SPACES INTO THE PRODUCT OF SIERPIŃSKI CURVES

DARIA MICHALIK

(Communicated by Alexander N. Dranishnikov)

Abstract. We give a short proof of the following fact: the set of embeddings of any n-dimensional separable metric space X into a certain n-dimensional subset of the $(n+1)$-product of Sierpiński curves Σ is residual in $C(X, \Sigma^{n+1})$.

Introduction and notation

In a Sierpiński curve we can specify the 0-dimensional subset of a “rational” points. In [5], Ivanšić and Milutinović proved that the $(n+1)$-product of Sierpiński curves, with points whose coordinates are all rational removed, is a universal space for n-dimensional metric separable spaces.

In this paper we present a new short proof of the last result. The proof is similar in spirit to proof of Theorem 1.1 in [6]. Sternfeld proved in his paper that any n-dimensional compact metric space may be embedded in the $(n+1)$-product of dendrites D. He also showed that the set of the basic embeddings is dense in $C(X, D^{n+1})$. However, it is worth pointing out that concerned in [6] is the fact that dendrites are ARs. Since a Sierpiński curve has not a good extension property, we use Lemma 3 to approximate it by ANRs. We also use in our proof the idea of the disjoint disk property that has been used in the topology of infinite- or finite-dimensional manifolds (cf. [7]).

All maps in this paper are continuous. Maps $f, g : X \to Y$ are said to be ε-near if $\sup_{x \in X} \text{dist}(f(x), g(x)) < \varepsilon$. A map $f : X \to Y$ is an ε-map if each point $y \in Y$ has an open neighbourhood V_y such that $\text{diam}(f^{-1}(V_y)) < \varepsilon$. We denote by $B(x, r)$ the open ball with centre x and radius r.

We shall use the following proposition (it is an easy application of Eilenberg’s Theorem; see [1])

Proposition 1. Let X be a compact metric space and Y be a metric ANR. Then for each map $f : X \to Y$ and each $\varepsilon > 0$ there exists a $\delta > 0$ such that for each surjective δ-map $p : X \to X'$ there exists a map $q : X' \to Y$ such that $\text{dist}(f, q \circ p) < \varepsilon$.

Received by the editors March 21, 2005 and, in revised form, April 28, 2005.

2000 Mathematics Subject Classification. Primary 54F45, 14C55; Secondary 54C25, 54F50.

Key words and phrases. Covering dimension, Sierpiński curve, embedding, ANR.
Let us recall the construction of the triangular Sierpiński curve. Consider the homotheties \(\varphi_i : \mathbb{R}^3 \to \mathbb{R}^3 \) with scale \(\frac{1}{2} \) and centres \(e_i \), where \(e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1) \). With \(\Sigma = \text{conv}(e_1, e_2, e_3) \) we let
\[
\Sigma_m := \bigcup_{\lambda_1, \ldots, \lambda_m \in \Lambda} \varphi_{\lambda_1} \circ \cdots \circ \varphi_{\lambda_m}(\Sigma), \quad \text{where } \Lambda = \{1, 2, 3\}, \quad \text{and } \Sigma(3) := \bigcap_{m \in \mathbb{N}} \Sigma_m.
\]

We also let \(\Sigma_n(3) := \Sigma \setminus \text{Int} \Sigma_n \). Clearly, \(\Sigma_n(3) \) is a graph and hence an ANR, for each \(n \in \mathbb{N} \).

We call the vertices of triangles obtained in the construction of \(\Sigma(3) \) rational points, and other points of \(\Sigma(3) \) irrational points. Let
\[
L_n(3) := \{x \in \Sigma(3)^{n+1} : \text{at least one coordinate of } x \text{ is irrational}\}.
\]

Theorem 2. Suppose that \(X \) is a metric separable space. If \(\dim(X) \leq n \), then the set of embeddings of \(X \) in \(L_n(3) \) is dense in the space \(C(X, \Sigma(3)^{n+1}) \).

The original proof \([5]\) of this result depended on complex arguments involving brick decompositions. Instead, here we use a simple property of compact metric spaces and the fact that a Sierpiński curve can be approximated by the graphs \(\Sigma_n(3) \):

Lemma 3. For each \(\varepsilon > 0 \) there exists a natural number \(k \) and a retraction \(r_k \) of \(\Sigma(3) \) onto \(\Sigma_k(3) \) such that \(d(r_k, \text{id}_{\Sigma(3)}) < \varepsilon \).

Proof. Let \(k \) be such that \(\frac{1}{2^k} < \varepsilon \). For each \(\lambda = (\lambda_1, \ldots, \lambda_k) \in \Lambda^k \) the Sierpiński curve \(\Sigma(3) \) intersects the simplex \(S_\lambda = \varphi_{\lambda_1} \circ \cdots \circ \varphi_{\lambda_k}(\Sigma) \) along a set containing the boundary of \(\text{Bd}(S_\lambda) \) but different from \(S_\lambda \). Therefore \(\Sigma(3) \cap S_\lambda \) may be retracted onto \(\text{Bd}(S_\lambda) \). The union of these retractions, taken over all \(\lambda \in \Lambda^k \), does the job. \(\square \)

Lemma 4. Let \(X \) be a compact metric space and \(f : X \to \Sigma(3)^{n+1} \) be a map. Then for each \(\varepsilon > 0 \) and for each pair of disjoint compact sets \(A, B \subset X \) such that \(\dim A \leq n \), there exists a map \(f_\varepsilon : X \to \Sigma(3)^{n+1} \) such that \(\text{dist}(f, f_\varepsilon) < \varepsilon \), \(f_\varepsilon(A) \cap f(A) = \emptyset \) and \(f_\varepsilon(A) \subset L_n(3) \).

Proof. The proof is by induction on \(n \). First let \(n = 0 \). We fix \(\varepsilon > 0 \) and take \(k \) so large that the retraction \(r_k : \Sigma(3) \to \Sigma_k(3) \) satisfies \(\text{dist}(\text{id}_{\Sigma(3)}, r_k) < \varepsilon/3 \). We also cover \(A \) by finitely many disjoint \(\delta \)-small compact sets, where \(\delta < \text{dist}(A, B) \), and denote by \(X' \) the space obtained from \(X \) by squeezing each of them to a point. Let us observe that by \([3]\) (Theorem 4.4.15) \(X' \) is a metrizable space. By Proposition \([1]\) for \(\delta \) small enough the map \(r_k \circ f \) is \(\varepsilon/3 \)-close to the composition of the projection \(p : X \to X' \) and of a map \(f' : X' \to \Sigma_k(3) \subset \Sigma(3) \). Thus, by replacing \(f \) by \(f' \), and \(A \) and \(B \) by \(p(A) \) and \(p(B) \), respectively, we may assume that the set \(A \) is finite, and by treating each of its points individually - that \(A \) has only one point, which we denote \(a \). We assume these arrangements have been made; in particular, \(\text{Im}(f) \subset \Sigma_k(3) \).

Let \(B(a, \eta) \) be a ball in \(X \) centred at \(a \), \(W = X / \text{Bd}B(a, \eta) \) be the decomposition space, obtained by squeezing \(\text{Bd}B(a, \eta) \) to a point, and let \(p : X \to W \) be the projection. By taking \(\eta \) small enough we ensure that \(\text{diam} f(B(a, \eta))) < \varepsilon/3 \) and there exists a map \(q : W \to \Sigma_k(3) \subset \Sigma(3) \) such that \(q \circ p \) is \(\varepsilon/3 \)-near to \(f \). (We use Proposition \([1]\))
Let us fix $b \in \text{Bd}(B(a, \eta))$. There exists an $\varepsilon/3$-short arc $J \in \Sigma(3)$ joining $q(p(b))$ with an irrational point $c \in \Sigma(3) \setminus \Sigma_k(3)$. Let $h : W \to \Sigma(3)$ be a map such that $h(z) = q(x)$ for $z \in W \setminus p(B(a, \eta))$ and $h(p(a)) = c$. The arc J is an AR so we can extend the map h to the whole space W so that $h(p(B(a, \eta)) \subset J$.

Let us define $f_x = h \circ p$. If $x \in X \setminus B(a, \eta)$, then $f_x(z) = q \circ p(x)$ and hence $d(f_x(z), f(x)) < \varepsilon/3$, while for $x \in B(a, \eta)$ we have $f_x(z) \in f(B(a, \eta))$.

Because $d(f_x(z), f(x)) < \varepsilon/3$, we have $d(f_x(z), f(x)) < d(f_x(z), f(b)) + d(f(b), f(x)) < 3 \cdot \varepsilon/3$.

The sets Z from f_x are fibers of map f. Using this property of a Sierpiński curve and the argument that the set of trivial fibers of map f is G_δ-set we can construct an embedding into $L_n(3)$. This way of construction is analogous to Sternfeld’s methods in [6].

Proof of Theorem 2

Let $f \in C(X, \Sigma(3))$. Then, there exists a dimension preserving compactification X^* of the space X such that the map $f : X \to \Sigma(3)$ can be extended to $f^* : X^* \to \Sigma(3)$. Hence, without loss of generality, we may assume that X is compact.

Let B be a countable family of closed subsets of X whose interiors are a base of the topology of X. Let us observe that

$$\{ h \in C(X, \Sigma(3)) : h \text{ is an embedding} \} = \bigcap_{A \subseteq B} \{ f \in C(X, \Sigma(3)) : f(A) \cap f(B) = \emptyset \}.$$

Fix $A, B \in B$ such that $A \cap B = \emptyset$. By Lemma 1 the set $\{ f \in C(X, \Sigma(3)) : f(A) \cap f(B) = \emptyset \}$ is dense in $C(X, \Sigma(3))$. Also by Lemma 1 with $A = X$ and $B = \emptyset$ the set $\{ f \in C(X, \Sigma(3)) : f(X) \subset L_n(3) \}$ is dense in $C(X, \Sigma(3))$.

The sets $\{ f \in C(X, \Sigma(3)) : f(X) \subset L_n(3) \}$ and $\bigcap_{A \subseteq B} \{ f \in C(X, \Sigma(3)) : f(A) \cap f(B) = \emptyset \}$ are obviously of type G_δ. Now the proof is completed by an application of Baire’s Theorem.

Remark 5. The following property of a Sierpiński curve can be proved analogously to Lemma 1.

Let F be a σ-closed 0-dimensional subset of a compact metric space X. Then $\{ f \in C(X(\Sigma(3)) : f^{-1}f(x) = \{ x \}$ for all $x \in F$ and $f(F)$ contains no rational points is a dense G_δ-set in $C(X, \Sigma(3))$.

This fact is similar to Theorem 1.1 in [5] that is a key result of Sternfeld’s paper. Using this property of a Sierpiński curve and the argument that the set of trivial fibers of map f is G_δ-set we can construct an embedding into $L_n(3)$. This way of construction is analogous to Sternfeld’s methods in [6].
Remark 6. In [6], Sternfeld noted that in the case of embeddings into \((n + 1)\)-product of dendrites the last space in that product can be replaced by an interval. The same can be done also for the product of Sierpiński curves.

Acknowledgments

I would like to thank Professor H. Toruńczyk for suggesting the problem and for many hours of conversation. I am also grateful to the referee for drawing my attention to Sternfeld’s paper and suggesting Remark 5.

References

Institute of Mathematics, Polish Academy of Sciences, P.O. Box 21 Śniadeckich 8 00-956 Warszawa, Poland

E-mail address: daria@impan.gov.pl