Polynomial maps and even dimensional spheres
HTML articles powered by AMS MathViewer
- by Francisco-Javier Turiel
- Proc. Amer. Math. Soc. 135 (2007), 2665-2667
- DOI: https://doi.org/10.1090/S0002-9939-07-08812-0
- Published electronically: February 9, 2007
- PDF | Request permission
Abstract:
We construct, for every even dimensional sphere $S^n$, $n\geq 2$, and every odd integer $k$, a homogeneous polynomial map $f: S^{n}\to S^{n}$ of Brouwer degree $k$ and algebraic degree $2|k|-1$.References
- Paul F. Baum, Quadratic maps and stable homotopy groups of spheres, Illinois J. Math. 11 (1967), 586–595. MR 220285
- R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163–168. MR 227999, DOI 10.1007/BF01425547
- R. M. W. Wood, Polynomial maps of affine quadrics, Bull. London Math. Soc. 25 (1993), no. 5, 491–497. MR 1233414, DOI 10.1112/blms/25.5.491
Bibliographic Information
- Francisco-Javier Turiel
- Affiliation: Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
- Address at time of publication: Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, 29071 Málaga, Spain
- Email: turiel@agt.cie.uma.es
- Received by editor(s): May 11, 2006
- Published electronically: February 9, 2007
- Additional Notes: The author thanks F. Gomez for pointing out to him this kind of problems
- Communicated by: Paul Goerss
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2665-2667
- MSC (2000): Primary 55Q40; Secondary 57R19, 14P25
- DOI: https://doi.org/10.1090/S0002-9939-07-08812-0
- MathSciNet review: 2302590