Non-abelian local invariant cycles
HTML articles powered by AMS MathViewer
- by Yen-lung Tsai and Eugene Z. Xia
- Proc. Amer. Math. Soc. 135 (2007), 2365-2367
- DOI: https://doi.org/10.1090/S0002-9939-07-08843-0
- Published electronically: March 22, 2007
- PDF | Request permission
Abstract:
Let $f$ be a degeneration of Kähler manifolds. The local invariant cycle theorem states that for a smooth fiber of the degeneration, any cohomology class, invariant under the monodromy action, comes from a global cohomology class. Instead of the classical cohomology, one may consider the non-abelian cohomology. This note demonstrates that the analogous non-abelian version of the local invariant cycle theorem does not hold if the first non-abelian cohomology is the moduli space (universal categorical quotient) of the representations of the fundamental group.References
- Jørgen Ellegaard Andersen, Fixed points of the mapping class group in the $\textrm {SU}(n)$ moduli spaces, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1511–1515. MR 1376748, DOI 10.1090/S0002-9939-97-03788-X
- C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), no. 2, 215–290. MR 444662
- Vik. S. Kulikov and P. F. Kurchanov, Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III, Encyclopaedia Math. Sci., vol. 36, Springer, Berlin, 1998, pp. 1–217, 263–270. MR 1602375, DOI 10.1007/978-3-662-03662-4_{1}
- Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, DOI 10.1090/memo/0336
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
- Ulf Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189, xv+144. MR 466149, DOI 10.1090/memo/0189
- Joseph P. Previte and Eugene Z. Xia, Topological dynamics on moduli spaces. I, Pacific J. Math. 193 (2000), no. 2, 397–417. MR 1755824, DOI 10.2140/pjm.2000.193.397
- Joseph P. Previte and Eugene Z. Xia, Topological dynamics on moduli spaces. II, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2475–2494. MR 1885660, DOI 10.1090/S0002-9947-02-02961-6
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI 10.1007/BF01403146
Bibliographic Information
- Yen-lung Tsai
- Affiliation: Department of Mathematical Sciences, National Chengchi University, Taipei 116, Taiwan
- Email: yenlung@math.nccu.edu.tw
- Eugene Z. Xia
- Affiliation: Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan
- Email: ezxia@ncku.edu.tw
- Received by editor(s): December 6, 2004
- Received by editor(s) in revised form: April 18, 2006
- Published electronically: March 22, 2007
- Additional Notes: Tsai is partially supported by the National Center for Theoretical Sciences, Hsinchu, Taiwan; Xia gratefully acknowledges partial support by National Science Council Taiwan grant NSC 93-2115-M-006-002.
- Communicated by: Michael Stillman
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2365-2367
- MSC (2000): Primary 14D05, 20F34, 55N20
- DOI: https://doi.org/10.1090/S0002-9939-07-08843-0
- MathSciNet review: 2302557