The Noether map II
HTML articles powered by AMS MathViewer
- by Mara D. Neusel and Müfit Sezer
- Proc. Amer. Math. Soc. 135 (2007), 2347-2354
- DOI: https://doi.org/10.1090/S0002-9939-07-08915-0
- Published electronically: March 21, 2007
- PDF | Request permission
Abstract:
Let $\rho : G\hookrightarrow \mathrm {GL}(n,\ \mathbb {F})$ be a faithful representation of a finite group $G$. In this paper we proceed with the study of the image of the associated Noether map \[ \eta _G^G: \mathbb {F}[V(G)]^G \rightarrow \mathbb {F}[V]^G. \] In our 2005 paper it has been shown that the Noether map is surjective if $V$ is a projective $\mathbb {F} G$-module. This paper deals with the converse. The converse is in general not true: we illustrate this with an example. However, for $p$-groups (where $p$ is the characteristic of the ground field $\mathbb {F}$) as well as for permutation representations of any group the surjectivity of the Noether map implies the projectivity of $V$.References
- J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR 860771, DOI 10.1017/CBO9780511623592
- Maurice Auslander and Jon F. Carlson, Almost-split sequences and group rings, J. Algebra 103 (1986), no. 1, 122–140. MR 860693, DOI 10.1016/0021-8693(86)90173-0
- David J. Benson, Representations and Cohomology, Volume I, Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, Cambridge 1991.
- H. E. A. Campbell, I. P. Hughes, R. J. Shank, and D. L. Wehlau, Bases for rings of coinvariants, Transform. Groups 1 (1996), no. 4, 307–336. MR 1424447, DOI 10.1007/BF02549211
- Jon F. Carlson, Modules and group algebras, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996. Notes by Ruedi Suter. MR 1393196, DOI 10.1007/978-3-0348-9189-9
- Ian Hughes and Gregor Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Algebra 28 (2000), no. 4, 2059–2088. MR 1747371, DOI 10.1080/00927870008826944
- Mara D. Neusel, The transfer in the invariant theory of modular permutation representations, Pacific J. Math. 199 (2001), no. 1, 121–135. MR 1847151, DOI 10.2140/pjm.2001.199.121
- Mara D. Neusel and Müfit Sezer, The Noether Map I, preprint Lubbock-Istanbul 2005.
- Mara D. Neusel and Larry Smith, Invariant theory of finite groups, Mathematical Surveys and Monographs, vol. 94, American Mathematical Society, Providence, RI, 2002. MR 1869812, DOI 10.1086/342122
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Mara D. Neusel
- Affiliation: Department of Mathematics, Texas Tech University, Lubbock, Texas 79409
- Email: mara.d.neusel@ttu.edu
- Müfit Sezer
- Affiliation: Department of Mathematics and Statistics, Boğazici Üniversitesi, MS 1042, Bebek, Istanbul, Turkey
- MR Author ID: 703561
- Email: mufit.sezer@boun.edu.tr
- Received by editor(s): April 12, 2006
- Published electronically: March 21, 2007
- Additional Notes: The first author is partially supported by NSA Grant No. H98230-05-1-0026
- Communicated by: Bernd Ulrich
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2347-2354
- MSC (2000): Primary 13A50, 20J06
- DOI: https://doi.org/10.1090/S0002-9939-07-08915-0
- MathSciNet review: 2302555