Log-log convexity and backward uniqueness
HTML articles powered by AMS MathViewer
- by Igor Kukavica
- Proc. Amer. Math. Soc. 135 (2007), 2415-2421
- DOI: https://doi.org/10.1090/S0002-9939-07-08991-5
- Published electronically: March 14, 2007
- PDF | Request permission
Abstract:
We study backward uniqueness properties for equations of the form \begin{equation*} u’ + A u = f. \end{equation*} Under mild regularity assumptions on $A$ and $f$, it is shown that $u(0)=0$ implies $u(t)=0$ for $t<0$. The argument is based on $\alpha$-log and log-log convexity. The results apply to mildly nonlinear parabolic equations and systems with rough coefficients and the 2D Navier-Stokes system.References
- Shmuel Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0252808
- S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121–239. MR 155203, DOI 10.1002/cpa.3160160204
- S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207–229. MR 204829, DOI 10.1002/cpa.3160200106
- C. Bardos and L. Tartar, Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rational Mech. Anal. 50 (1973), 10–25 (French). MR 338517, DOI 10.1007/BF00251291
- Peter Constantin and Ciprian Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. MR 972259
- Peter Constantin, Ciprian Foias, Igor Kukavica, and Andrew J. Majda, Dirichlet quotients and $2$D periodic Navier-Stokes equations, J. Math. Pures Appl. (9) 76 (1997), no. 2, 125–153. MR 1432371, DOI 10.1016/S0021-7824(97)89948-5
- P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Spectral barriers and inertial manifolds for dissipative partial differential equations, J. Dynam. Differential Equations 1 (1989), no. 1, 45–73. MR 1010960, DOI 10.1007/BF01048790
- Luis Escauriaza, Carleman inequalities and the heat operator, Duke Math. J. 104 (2000), no. 1, 113–127. MR 1769727, DOI 10.1215/S0012-7094-00-10415-2
- Luis Escauriaza and Luis Vega, Carleman inequalities and the heat operator. II, Indiana Univ. Math. J. 50 (2001), no. 3, 1149–1169. MR 1871351, DOI 10.1512/iumj.2001.50.1937
- Jean-Michel Ghidaglia, Some backward uniqueness results, Nonlinear Anal. 10 (1986), no. 8, 777–790. MR 851146, DOI 10.1016/0362-546X(86)90037-4
- Igor Kukavica, Backward uniqueness for solutions of linear parabolic equations, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1755–1760. MR 2051137, DOI 10.1090/S0002-9939-03-07355-6
- P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 747–766. MR 86991, DOI 10.1002/cpa.3160090407
- M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, Duke Math. J. 28 (1961), 369–382. MR 140840
- Hajimu Ogawa, Lower bounds for solutions of differential inequalities in Hilbert space, Proc. Amer. Math. Soc. 16 (1965), 1241–1243. MR 185291, DOI 10.1090/S0002-9939-1965-0185291-6
- M. H. Protter, Properties of solutions of parabolic equations and inequalities, Canadian J. Math. 13 (1961), 331–345. MR 153982, DOI 10.4153/CJM-1961-028-1
- James Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962) Univ. Wisconsin Press, Madison, Wis., 1963, pp. 69–98. MR 0150444
Bibliographic Information
- Igor Kukavica
- Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089
- MR Author ID: 314775
- Email: kukavica@usc.edu
- Received by editor(s): November 1, 2004
- Received by editor(s) in revised form: August 30, 2005
- Published electronically: March 14, 2007
- Additional Notes: The author was supported in part by the NSF grant DMS-0306586
- Communicated by: David S. Tartakoff
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2415-2421
- MSC (2000): Primary 35B42, 35B41, 35K55, 35K15, 35G20
- DOI: https://doi.org/10.1090/S0002-9939-07-08991-5
- MathSciNet review: 2302562