## On quasiplanes in Euclidean spaces

HTML articles powered by AMS MathViewer

- by O. Martio, V. M. Miklyukov and M. Vuorinen PDF
- Proc. Amer. Math. Soc.
**135**(2007), 2433-2442 Request permission

## Abstract:

A variational inequality for the images of $k$-dimensional hyperplanes under quasiconformal maps of the $n$-dimensional Euclidean space is proved when $1\le k\le n-2.$## References

- L. Ahlfors, Quasiconformal reflections, Acta Math.
**109**(1963), 291–301. - G.D. Anderson, M.K. Vamanamurthy, and M.K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Math. Soc., Ser. of Monographs and Advanced texts, A Wiley - Interscience Publication, John Wiley&Sons, Inc., New-York – Chichester – Weinheim – Brisbane – Singapore – Toronto, 1997.
- C. Bandle, Isoperimetric inequalities and applications, Pitman Advanced Publishing, Boston-London-Melbourne, 1980.
- E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin – Göttingen – Heidelberg, 1961.
- M. Bonk and J. Heinonen, Smooth quasiregular mappings with branching, Publ. Math. Inst. Hautes Études Sci. No. 100 (2004), 153–170.
- L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC PRESS, Boca Raton – New York – London – Tokyo, 1992.
- D. Franke, O. Martio, V.M. Miklyukov, M. Vuorinen, and R. Wisk, Quasiregular mappings and ${\mathcal WT}$-classes of differential forms on Riemannian manifolds, Pacific J. Math. 202 (2002), 73–92.
- F.W. Gehring, Uniform domains and the ubiquitous quasidisk, Jahresber. Deutsch. Math.-Verein,
**89**(1987), 88–103. - M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.
- J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, 1993.
- S.L. Krushkal, Quasiconformal mirrors, Sibirsk. Mat. Zh. 40 (1999), 880–892.
- O. Martio, V. Miklyukov, S. Ponnusamy, and M. Vuorinen, On some properties of quasiplanes, Results Math. 42 (2002), 107–113.
- P. Mattila and M.Vuorinen, Linear approximation property, Minkowski dimension and quasiconformal spheres, J. London Math. Soc. (2) 42 (1990), 249–266.
- V.M. Miklyukov, On quasiconformally flat surfaces in Riemannian manifolds, Izv. RAN (ser. math.), 67 (2003), 83–106.
- J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), No. 1, 62–105.
- J. Väisälä, M. Vuorinen and H. Wallin, Thick sets and quasisymmetric maps, Nagoya Math. J. 135 (1994), 121-148.
- M. Vuorinen, Geometric properties of quasiconformal maps and special functions. I. Quasiconformal maps and spheres. (English. English, Polish summary) Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 24 (1997), 7–22. (see also Errata: "Geometric properties of quasiconformal maps and special functions. I, II, III [Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 24 (1997), 7–22; ibid., 23–35; ibid., 37–58; ]. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 26 (1998).
- M. Vuorinen, O. Martio, and V.M. Miklyukov, On geometric structure of quasiplanes, Proc. of Dept. of Mathematical Analysis and Function Theory, Volgograd State Univ., 2002, 21–31, ISBN 5-85534-531-9.
- I. Prause, Flatness properties of quasispheres, Preprint, University of Helsinki 2007.
- I. Prause, Distortion of dimension under quasiconformal mappings, Ph.D. thesis, University of Helsinki 2007.

## Additional Information

**O. Martio**- Affiliation: Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
- MR Author ID: 120710
- Email: martio@cc.helsinki.fi
**V. M. Miklyukov**- Affiliation: Mathematics Department, Volgograd State University, 2 Prodolnaya 30, Volgograd 400062, Russia
- Email: miklyuk@hotmail.com
**M. Vuorinen**- Affiliation: Department of Mathematics, University of Turku, 20014 Turku, Finland
- MR Author ID: 179630
- Email: vuorinen@utu.fi
- Received by editor(s): April 27, 2004
- Received by editor(s) in revised form: July 18, 2005, and November 6, 2005
- Published electronically: April 5, 2007
- Communicated by: Andreas Seeger
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**135**(2007), 2433-2442 - MSC (2000): Primary 30C62, 30C65
- DOI: https://doi.org/10.1090/S0002-9939-07-09117-4
- MathSciNet review: 2302564