Equilibrium points of logarithmic potentials on convex domains
HTML articles powered by AMS MathViewer
- by J. K. Langley
- Proc. Amer. Math. Soc. 135 (2007), 2821-2826
- DOI: https://doi.org/10.1090/S0002-9939-07-08791-6
- Published electronically: February 7, 2007
- PDF | Request permission
Abstract:
Let $D$ be a convex domain in $\mathbb {C}$. Let $a_k > 0$ be summable constants and let $z_k \in D$. If the $z_k$ converge sufficiently rapidly to $\zeta \in \partial D$ from within an appropriate Stolz angle, then the function $\sum _{k=1}^\infty a_k /( z - z_k )$ has infinitely many zeros in $D$. An example shows that the hypotheses on the $z_k$ are not redundant and that two recently advanced conjectures are false.References
- Albert Baernstein II, Proof of Edrei’s spread conjecture, Proc. London Math. Soc. (3) 26 (1973), 418–434. MR 374429, DOI 10.1112/plms/s3-26.3.418
- Ludwig Bieberbach, Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Die Grundlehren der mathematischen Wissenschaften, Band 66, Springer-Verlag, Berlin-New York, 1965 (German). Zweite umgearbeitete und erweiterte Auflage. MR 0176133
- J. Borcea, Equilibrium points of logarithmic potentials induced by positive charge distributions I: generalised de Bruijn-Springer relations, Trans. Amer. Math. Soc., to appear.
- J. Clunie, A. Erëmenko, and J. Rossi, On equilibrium points of logarithmic and Newtonian potentials, J. London Math. Soc. (2) 47 (1993), no. 2, 309–320. MR 1207951, DOI 10.1112/jlms/s2-47.2.309
- Alexandre Eremenko, Jim Langley, and John Rossi, On the zeros of meromorphic functions of the form $f(z)=\sum ^\infty _{k=1}a_k/(z-z_k)$, J. Anal. Math. 62 (1994), 271–286. MR 1269209, DOI 10.1007/BF02835958
- A. A. Gol′dberg and I. V. Ostrovskiĭ, Raspredelenie znacheniĭ meromorfnykh funktsiĭ, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0280720
- W.K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964.
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- James K. Langley and John Rossi, Meromorphic functions of the form $f(z)=\sum ^\infty _{n=1}a_n/(z-z_n)$, Rev. Mat. Iberoamericana 20 (2004), no. 1, 285–314. MR 2076782, DOI 10.4171/RMI/390
- J. K. Langley and John Rossi, Critical points of certain discrete potentials, Complex Var. Theory Appl. 49 (2004), no. 7-9, 621–637. MR 2088052, DOI 10.1080/02781070410001732142
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330, DOI 10.1007/978-3-662-06842-7
- G. Valiron, Lectures on the general theory of integral functions, Chelsea, New York, 1949.
Bibliographic Information
- J. K. Langley
- Affiliation: School of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kingdom
- MR Author ID: 110110
- Email: jkl@maths.nott.ac.uk
- Received by editor(s): February 21, 2006
- Received by editor(s) in revised form: May 19, 2006
- Published electronically: February 7, 2007
- Communicated by: Juha M. Heinonen
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2821-2826
- MSC (2000): Primary 30D35, 31A05, 31B05
- DOI: https://doi.org/10.1090/S0002-9939-07-08791-6
- MathSciNet review: 2317957