The characteristic function of a complex symmetric contraction
HTML articles powered by AMS MathViewer
- by Nicolas Chevrot, Emmanuel Fricain and Dan Timotin
- Proc. Amer. Math. Soc. 135 (2007), 2877-2886
- DOI: https://doi.org/10.1090/S0002-9939-07-08803-X
- Published electronically: May 8, 2007
- PDF | Request permission
Abstract:
It is shown that a contraction on a Hilbert space is complex symmetric if and only if the values of its characteristic function are all symmetric with respect to a fixed conjugation. Applications are given to the description of complex symmetric contractions with defect indices equal to 2.References
- Gr. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Theory 7 (1982), no. 1, 179–189. MR 650203
- Ciprian Foias and Arthur E. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990. MR 1120546, DOI 10.1007/978-3-0348-7712-1
- Stephan Ramon Garcia, Conjugation, the backward shift, and Toeplitz kernels, J. Operator Theory 54 (2005), no. 2, 239–250. MR 2186351
- Stephan Ramon Garcia, Conjugation and Clark operators, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 67–111. MR 2198373, DOI 10.1090/conm/393/07372
- Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285–1315. MR 2187654, DOI 10.1090/S0002-9947-05-03742-6
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- Nicolas Chevrot
- Affiliation: Institut Camille Jordan, UFR de Mathématiques, Université Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France
- Email: chevrot@math.univ-lyon1.fr
- Emmanuel Fricain
- Affiliation: Institut Camille Jordan, UFR de Mathématiques, Université Claude Bernard Lyon I, 69622 Villeurbanne Cedex, France
- MR Author ID: 648628
- Email: fricain@math.univ-lyon1.fr
- Dan Timotin
- Affiliation: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania
- Email: Dan.Timotin@imar.ro
- Received by editor(s): April 8, 2006
- Received by editor(s) in revised form: May 28, 2006
- Published electronically: May 8, 2007
- Communicated by: Joseph A. Ball
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2877-2886
- MSC (2000): Primary 47A45, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-07-08803-X
- MathSciNet review: 2317964