A smooth counterexample to Nori’s conjecture on the fundamental group scheme
HTML articles powered by AMS MathViewer
- by Christian Pauly
- Proc. Amer. Math. Soc. 135 (2007), 2707-2711
- DOI: https://doi.org/10.1090/S0002-9939-07-08805-3
- Published electronically: May 2, 2007
- PDF | Request permission
Abstract:
We show that Nori’s fundamental group scheme $\pi (X,x)$ does not base change correctly under extension of the base field for certain smooth projective ordinary curves $X$ of genus $2$ defined over a field of characteristic $2$.References
- H. Lange, C. Pauly: On Frobenius-destabilized rank-2 vector bundles over curves, arxiv.math.AG/0309456
- Y. Laszlo and C. Pauly, The action of the Frobenius maps on rank $2$ vector bundles in characteristic $2$, J. Algebraic Geom. 11 (2002), no. 2, 219–243. MR 1874113, DOI 10.1090/S1056-3911-01-00310-1
- Yves Laszlo and Christian Pauly, The Frobenius map, rank 2 vector bundles and Kummer’s quartic surface in characteristic 2 and 3, Adv. Math. 185 (2004), no. 2, 246–269. MR 2060469, DOI 10.1016/S0001-8708(03)00211-1
- J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997. Translated by A. Maciocia. MR 1428426
- V. B. Mehta and S. Subramanian, On the fundamental group scheme, Invent. Math. 148 (2002), no. 1, 143–150. MR 1892846, DOI 10.1007/s002220100191
- Madhav V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), no. 2, 73–122. MR 682517, DOI 10.1007/BF02967978
Bibliographic Information
- Christian Pauly
- Affiliation: Département de Mathématiques, Université de Montpellier II - Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- Email: pauly@math.univ-montp2.fr
- Received by editor(s): January 10, 2006
- Received by editor(s) in revised form: May 18, 2006
- Published electronically: May 2, 2007
- Communicated by: Ted Chinburg
- © Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 135 (2007), 2707-2711
- MSC (2000): Primary 14H60, 14D20; Secondary 14H30
- DOI: https://doi.org/10.1090/S0002-9939-07-08805-3
- MathSciNet review: 2317943