On $L^2$ cohomology of ACH Kähler manifolds
HTML articles powered by AMS MathViewer
- by Xiaodong Wang
- Proc. Amer. Math. Soc. 135 (2007), 2949-2960
- DOI: https://doi.org/10.1090/S0002-9939-07-08838-7
- Published electronically: February 9, 2007
- PDF | Request permission
Abstract:
We discuss a class of complete Kähler manifolds which are asymptotically complex hyperbolic near infinity. The main result is a sharp vanishing theorem for the second $L^2$ cohomology of such manifolds under certain assumptions. The borderline case characterizes a Kähler-Einstein manifold constructed by Calabi.References
- M. Anderson, Einstein metrics with prescribed conformal infinity on $4$-manifolds, arXiv math.DG/0105243.
- R. L. Bishop and S. I. Goldberg, On the second cohomology group of a Kaehler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119–122. MR 172221, DOI 10.1090/S0002-9939-1965-0172221-6
- Olivier Biquard, Métriques d’Einstein asymptotiquement symétriques, Astérisque 265 (2000), vi+109 (French, with English and French summaries). MR 1760319
- E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 269–294 (French). MR 543218, DOI 10.24033/asens.1367
- Kevin Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990), no. 3, 521–541. MR 1074486, DOI 10.1007/BF01233439
- Shiu Yuen Cheng and Shing Tung Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 507–544. MR 575736, DOI 10.1002/cpa.3160330404
- C. L. Epstein and R. B. Melrose, Shrinking tubes and the $\overline {\delta }$-Neumann problem, unpublished.
- C. L. Epstein, R. B. Melrose, and G. A. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), no. 1-2, 1–106. MR 1111745, DOI 10.1007/BF02392446
- Paul F. Klembeck, Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275–282. MR 463506, DOI 10.1512/iumj.1978.27.27020
- John M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), no. 1-2, 253–271. MR 1362652, DOI 10.4310/CAG.1995.v3.n2.a2
- Peter Li and Shing-Tung Yau, Asymptotically flat complete Kähler manifolds, Complex geometry (Osaka, 1990) Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 131–144. MR 1201607
- Anthony Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979), no. 3, 567–573. MR 554385, DOI 10.2307/1971239
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), no. 2, 309–339. MR 961517
- Xiaodong Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), no. 5-6, 671–688. MR 1879811, DOI 10.4310/MRL.2001.v8.n5.a9
- Xiaodong Wang, On the $L^2$-cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), no. 2, 311–327. MR 1944573, DOI 10.1215/S0012-7094-02-11523-3
- Edward Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999), no. 6, 1635–1655 (2000). MR 1812133, DOI 10.4310/ATMP.1999.v3.n6.a1
- Hung Hsi Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, i–xii and 289–538. MR 1079031
Bibliographic Information
- Xiaodong Wang
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: xwang@math.msu.edu
- Received by editor(s): January 17, 2006
- Received by editor(s) in revised form: May 24, 2006
- Published electronically: February 9, 2007
- Communicated by: Richard A. Wentworth
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2949-2960
- MSC (2000): Primary 53C55; Secondary 58J50
- DOI: https://doi.org/10.1090/S0002-9939-07-08838-7
- MathSciNet review: 2317973