Strong convergence of path for continuous pseudo-contractive mappings
HTML articles powered by AMS MathViewer
- by Claudio H. Morales
- Proc. Amer. Math. Soc. 135 (2007), 2831-2838
- DOI: https://doi.org/10.1090/S0002-9939-07-08910-1
- Published electronically: February 9, 2007
- PDF | Request permission
Abstract:
The purpose of this paper is to study the convergence of a path that begins at the unique fixed point of a strongly pseudo-contractive operator defined on a closed and convex subset of a reflexive Banach space and converges to a fixed point of a pseudo-contractive mapping. Primarily, it is proven that a convex combination of these two operators is indeed strongly pseudo-contractive under the weakly inward condition. This fact generalizes a result of Barbu for accretive operators.References
- V. Barbu, Continuous perturbations of nonlinear $m$-accretive operators in Banach spaces, Boll. Un. Mat. Ital. (4) 6 (1972), 270–278 (English, with Italian summary). MR 0326514
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843, DOI 10.1007/978-94-010-1537-0
- V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces, Revised edition, Editura Academiei, Bucharest; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. Translated from the Romanian. MR 0513634
- Felix E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR 0405188
- Felix E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875–882. MR 232255, DOI 10.1090/S0002-9904-1967-11823-8
- C. E. Chidume and H. Zegeye, Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc. 132 (2004), no. 3, 831–840. MR 2019962, DOI 10.1090/S0002-9939-03-07101-6
- Rudong Chen, Pei-Kee Lin, and Yisheng Song, An approximation method for strictly pseudocontractive mappings, Nonlinear Anal. 64 (2006), no. 11, 2527–2535. MR 2215825, DOI 10.1016/j.na.2005.08.031
- Michael G. Crandall, Differential equations on convex sets, J. Math. Soc. Japan 22 (1970), 443–455. MR 268491, DOI 10.2969/jmsj/02240443
- Klaus Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374. MR 350538, DOI 10.1007/BF01171148
- Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508–520. MR 226230, DOI 10.2969/jmsj/01940508
- W. A. Kirk, A fixed point theorem for local pseudocontractions in uniformly convex spaces, Manuscripta Math. 30 (1979/80), no. 1, 89–102. MR 552364, DOI 10.1007/BF01305991
- W. A. Kirk and R. Schöneberg, Mapping theorems for local expansions in metric and Banach spaces, J. Math. Anal. Appl. 72 (1979), no. 1, 114–121. MR 552327, DOI 10.1016/0022-247X(79)90279-8
- Yoshikazu Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), no. 4, 640–665. MR 399974, DOI 10.2969/jmsj/02740640
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399–414. MR 318991, DOI 10.1090/S0002-9947-1973-0318991-4
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI 10.1090/S0002-9904-1941-07451-3
- Claudio Morales, On the fixed-point theory for local $k$-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), no. 1, 71–74. MR 589138, DOI 10.1090/S0002-9939-1981-0589138-4
- Claudio H. Morales and Jong Soo Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3411–3419. MR 1707528, DOI 10.1090/S0002-9939-00-05573-8
- A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46–55. MR 1738332, DOI 10.1006/jmaa.1999.6615
- Hong-Kun Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240–256. MR 1911872, DOI 10.1112/S0024610702003332
- Hong-Kun Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279–291. MR 2086546, DOI 10.1016/j.jmaa.2004.04.059
- V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 33 pp. (errata insert). MR 300060
Bibliographic Information
- Claudio H. Morales
- Affiliation: Department of Mathematics, University of Alabama in Huntsville, Huntsville, Alabama 35899
- Email: morales@math.uah.edu
- Received by editor(s): May 23, 2006
- Published electronically: February 9, 2007
- Communicated by: Joseph A. Ball
- © Copyright 2007 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 135 (2007), 2831-2838
- MSC (2000): Primary 47H10; Secondary 65J15
- DOI: https://doi.org/10.1090/S0002-9939-07-08910-1
- MathSciNet review: 2317959